Ingesting a Bitter Solution: The Sweet Touch to Increasing Short-Term Cycling Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: The authors investigated the potential benefit of ingesting 2 mM of quinine (bitter tastant) on a 3000-m cycling time-trial (TT) performance. Methods: Nine well-trained male cyclists (maximal aerobic power: 386 [38] W) performed a maximal incremental cycling ergometer test, three 3000-m familiarization TTs, and four 3000-m intervention TTs (∼4 min) on consecutive days. The 4 interventions were (1) 25 mL of placebo, (2) a 25-mL sweet solution, and (3) and (4) repeat 25 mL of 2-mM quinine solutions (Bitter1 and Bitter2), 30 s before each trial. Participants self-selected their gears and were only aware of distance covered. Results: Overall mean power output for the full 3000 m was similar for all 4 conditions: placebo, 348 (45) W; sweet, 355 (47) W; Bitter1, 354 (47) W; and Bitter2, 355 (48) W. However, quinine administration in Bitter1 and Bitter2 increased power output during the first kilometer by 15 ± 11 W and 21 ± 10 W (mean ± 90% confidence limits), respectively, over placebo, followed by a decay of 34 ± 32 W during Bitter1 and Bitter2 during the second kilometer. Bitter2 also induced a 11 ± 13-W increase during the first kilometer compared with the sweet condition. Conclusions: Ingesting 2 mM of quinine can improve cycling performance during the first one-third of a 3000-m TT and could be used for sporting events lasting ∼80 s to potentially improve overall performance.

Etxebarria and Clark are with the Research Inst of Sport and Exercise, University of Canberra, Canberra, ACT, Australia. Ross and Burke are with the Australian Inst of Sport, Canberra, ACT, Australia, and the Mary MacKillop Inst for Health Research, Australian Catholic University, Melbourne, VIC, Australia.

Etxebarria (naroa.etxebarria@canberra.edu.au) is corresponding author.
  • 1.

    Burke LM, Maughan RJ. The Governor has a sweet tooth—mouth sensing of nutrients to enhance sports performance. Eur J Sport Sci. 2015;15(1):29–40. PubMed ID: 25345670 doi:10.1080/17461391.2014.971880

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc. 2004;36(12):2107–2111. PubMed ID: 15570147 doi:10.1249/01.MSS.0000147585.65709.6F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Carter JM, Jeukendrup AE, Mann CH, Jones DA. The effect of glucose infusion on glucose kinetics during a 1-h time trial. Med Sci Sports Exerc. 2004;36(9):1543–1550. PubMed ID: 15354036 doi:10.1249/01.MSS.0000139892.69410.D8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gam S, Guelfi KJ, Fournier PA. Mouth rinsing and ingesting a bitter solution improves sprint cycling performance. Med Sci Sports Exerc. 2014;46:1648–1657. PubMed ID: 24504430 doi:10.1249/MSS.0000000000000271

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Gam S, Guelfi KJ, Hammond G, Fournier PA. Mouth rinsing and ingestion of a bitter-tasting solution increases corticomotor excitability in male competitive cyclists. Eur J Appl Physiol. 2015;115(10):2199–2204. PubMed ID: 26049404 doi:10.1007/s00421-015-3200-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Gam S, Tan M, Guelfi KJ, Fournier PA. Mouth rinsing with a bitter solution without ingestion does not improve sprint cycling performance. Eur J Appl Physiol. 2015;115(1):129–138. PubMed ID: 25236837 doi:10.1007/s00421-014-2987-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hopkins WG, Schabort EJ, Hawley JA. Reliability of power in physical performance tests. Sports Med. 2001;31(3):211–234. PubMed ID: 11286357 doi:10.2165/00007256-200131030-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Martin A. Efficacy of 11-minute warm-up cycling routine. Presented at the Applied Physiology Conference Australian Institute of Sport; 2014. Canberra, ACT.

    • Export Citation
  • 9.

    Abbiss CR, Quod MJ, Levin G, Martin DT, Laursen PB. Accuracy of the Velotron ergometer and SRM power meter. Int J Sports Med. 2009;30(2):107–112. PubMed ID: 19177315 doi:10.1055/s-0028-1103285

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Le Meur Y, Bernard T, Dorel S, et al. Relationships between triathlon performance and pacing strategy during the run in an international competition. Int J Sports Physiol Perform. 2011;6(2):183–194. PubMed ID: 21725104 doi:10.1123/ijspp.6.2.183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Wu SS, Peiffer JJ, Brisswalter J, et al. Pacing strategies during the swim, cycle and run disciplines of sprint, Olympic and half-Ironman triathlons. Eur J Appl Physiol. 2015;115(5):1147–1154. PubMed ID: 25557388 doi:10.1007/s00421-014-3096-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Edwards AG, Byrnes WC. Aerodynamic characteristics as determinants of the drafting effect in cycling. Med Sci Sports Exerc. 2007;39(1):170–176. PubMed ID: 17218899 doi:10.1249/01.mss.0000239400.85955.12

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Jeukendrup AE, Craig NP, Hawley JA. The bioenergetics of World Class Cycling. J Sci Med Sport. 2000;3(4):414–433. PubMed ID: 11235007 doi:10.1016/S1440-2440(00)80008-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Heimans L, Dijkshoorn WR, Hoozemans MJ, de Koning JJ. Optimizing the team for required power during track-cycling team pursuit. Int J Sports Physiol Perform. 2017;12(10):1385–1391. PubMed ID: 28338359 doi:10.1123/ijspp.2016-0451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Frank GK, Oberndorfer TA, Simmons AN, et al. Sucrose activates human taste pathways differently from artificial sweetener. Neuroimage. 2008;39(4):1559–1569. PubMed ID: 18096409 doi:10.1016/j.neuroimage.2007.10.061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Haase L, Cerf-Ducastel B, Murphy C. Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. Neuroimage. 2009;44(3):1008–1021. PubMed ID: 19007893 doi:10.1016/j.neuroimage.2008.09.044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Craig NP, Norton KI. Characteristics of track cycling. Sports Med. 2001;31(7):457–468. PubMed ID: 11428683 doi:10.2165/00007256-200131070-00001

  • 19.

    Broker JP, Kyle CR, Burke ER. Racing cyclist power requirements in the 4000-m individual and team pursuits. Med Sci Sports Exerc. 1999;31(11):1677–1685. PubMed ID: 10589873 doi:10.1097/00005768-199911000-00026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 221 221 57
Full Text Views 16 16 0
PDF Downloads 9 9 0