Force-Velocity-Power Profiling During Weighted-Vest Sprinting in Soccer

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To describe the load–velocity relationship and the effects of increasing loads on spatiotemporal and derived kinetic variables of sprinting using weighted vests (WV) in soccer players and determining the load that maximizes power output. Methods: A total of 23 soccer players (age 20.8 [1.5] y) performed 10 maximal 30-m sprints wearing a WV with 5 different loads (0%, 10%, 20%, 30%, and 40% body mass [BM]). Sprint velocity and time were collected using a radar device and wireless photocells. Mechanical outputs were computed using a recently developed valid and reliable field method that estimates the step-averaged ground-reaction forces during overground sprint acceleration from anthropometric and spatiotemporal data. Raw velocity–time data were fitted by an exponential function and used to calculate the net horizontal ground-reaction forces and horizontal power output. Individual linear force–velocity relationships were then extrapolated to calculate the theoretical maximum horizontal force (F0) and velocity and the ratio of force application (proportion of the total force production that is directed forward at sprint start). Results: Magnitude-based inferences showed an almost certain decrease in F0 (effect size = 0.78–3.35), maximum power output (effect size = 0.78–3.81), and maximum ratio of force (effect size = 0.82–3.87) as the load increased. The greatest changes occurred with loads heavier than 20% BM, especially in ratio of force. In addition, the maximum power was achieved under unloaded conditions. Conclusions: Increasing load in WV sprinting affects spatiotemporal and kinetic variables. The greatest change in ratio of force happened with loads heavier than 20% BM. Thus, the authors recommend the use of loads ≤20% BM for WV sprinting.

Carlos-Vivas, Marín-Cascales, Freitas, and Alcaraz are with the Research Center for High Performance Sport, Catholic University of Murcia, Murcia, Spain. Perez-Gomez is with the Health, Economy, Motricity, and Education Research Group, Faculty of Sport Sciences, University of Extremadura, Caceres, Spain. Alcaraz is also with the Faculty of Sport Sciences, UCAM, Catholic University of Murcia, Murcia, Spain.

Carlos-Vivas (jcarlos@ucam.edu) is corresponding author.
  • 1.

    Haugen TA, Tønnessen E, Seiler S. Anaerobic performance testing of professional soccer players 1995–2010. Int J Sports Physiol Perform. 2013;8(2):148–156. PubMed ID: 22868347 doi:10.1123/ijspp.8.2.148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Tønnessen E, Hem E, Leirstein S, Haugen T, Seiler S. Maximal aerobic power characteristics of male professional soccer players, 1989–2012. Int J Sports Physiol Perform. 2013;8(3):323–329. PubMed ID: 23118070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Haugen TA, Tønnessen E, Seiler S. Speed and countermovement-jump characteristics of elite female soccer players, 1995–2010. Int J Sports Physiol Perform. 2012;7(4):340–349. PubMed ID: 22645175 doi:10.1123/ijspp.7.4.340

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):625–631. PubMed ID: 22394328 doi:10.1080/02640414.2012.665940

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Haugen TA, Tønnessen E, Hisdal J, Seiler S. The role and development of sprinting speed in soccer. Int J Sports Physiol Perform. 2014;9(3):432–441. PubMed ID: 23982902 doi:10.1123/ijspp.2013-0121

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Haff GG, Nimphius S. Training principles for power. Strength Cond J. 2012;34(6):2–12. doi:10.1519/SSC.0b013e31826db467

  • 7.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 2—training considerations for improving maximal power production. Sports Med. 2011;41(2):125–146. PubMed ID: 21244105 doi:10.2165/11538500-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    McBride JM, Triplett-McBride T, Davie A, Newton RU. The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. J Strength Cond Res. 2002;16(1):75–82. PubMed ID: 11834109

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Clark KP, Stearne DJ, Walts CT, Miller AD. The longitudinal effects of resisted sprint training using weighted sleds vs weighted vests. J Strength Cond Res. 2010;24(12):3287–3295. PubMed ID: 19996786 doi:10.1519/JSC.0b013e3181b62c0a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Alcaraz PE, Palao JM, Elvira JLL, Linthorne NP. Effects of three types of resisted sprint training devices on the kinematics of sprinting at maximum velocity. J Strength Cond Res. 2008;22(3):890–897. PubMed ID: 18438225 doi:10.1519/JSC.0b013e31816611ea

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cronin JB, Hansen K, Kawamori N, McNair P. Effects of weighted vests and sled towing on sprint kinematics. Sports Biomech. 2008;7(2):160–172. PubMed ID: 18610770 doi:10.1080/14763140701841381

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Alcaraz PE, Palao JM, Elvira JLL. Determining the optimal load for resisted sprint training with sled towing. J Strength Cond Res. 2009;23(2):480–485. PubMed ID: 19197200 doi:10.1519/JSC.0b013e318198f92c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    MacDougall D, Sale D. Continuous vs. interval training: a review for the athlete and the coach. Can J Appl Sport Sci. 1981;6(2):93–97. PubMed ID: 7016358

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Sáez-Sáez de Villarreal E, Requena B, Newton RU. Does plyometric training improve strength performance? A meta-analysis. J Sci Med Sport. 2010;13(5):513–522. PubMed ID: 19897415 doi:10.1016/j.jsams.2009.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Kugler F, Janshen L. Body position determines propulsive forces in accelerated running. J Biomech. 2010;43(2):343–348. PubMed ID: 19863962 doi:10.1016/j.jbiomech.2009.07.041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25(5):583–594. PubMed ID: 25640466 doi:10.1111/sms.12389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Rampinini E, Bishop D, Marcora S, Bravo DF, Sassi R, Impellizzeri F. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int J Sports Med. 2007;28(3):228–235. PubMed ID: 17024621 doi:10.1055/s-2006-924340

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Cronin J, Hansen KT. Resisted sprint training for the acceleration phase of sprinting. Strength Cond J. 2006;28(4):38–39. doi:10.1519/00126548-200608000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Alcaraz PE, Carlos-Vivas J, Oponjuru BO, Martínez-Rodríguez A. The effectiveness of resisted sled training (RST) for sprint performance: a systematic review and meta-analysis. Sports Med. 2018;48(9):2143–2165. PubMed ID: 29926369 doi:10.1007/s40279-018-0947-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Alcaraz P, Elvira J, Palao J. Kinematic, strength, and stiffness adaptations after a short-term sled towing training in athletes. Scand J Med Sci Sports. 2014;24(2):279–290. PubMed ID: 22672673 doi:10.1111/j.1600-0838.2012.01488.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cross MR, Brughelli M, Samozino P, Brown SR, Morin JB. Optimal loading for maximizing power during sled-resisted sprinting. Int J Sports Physiol Perform. 2017;12(8):1069–1077. PubMed ID: 28051333 doi:10.1123/ijspp.2016-0362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Morin JB, Petrakos G, Jiménez-Reyes P, Brown SR, Samozino P, Cross MR. Very-heavy sled training for improving horizontal-force output in soccer players. Int J Sports Physiol Perform. 2017;12(6):840–844. PubMed ID: 27834560 doi:10.1123/ijspp.2016-0444

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cross MR, Brughelli ME, Cronin JB. Effects of vest loading on sprint kinetics and kinematics. J Strength Cond Res. 2014;28(7):1867–1874. PubMed ID: 24378661 doi:10.1519/JSC.0000000000000354

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Carlos-Vivas J, Freitas TT, Cuesta M, Perez-Gomez J, De Hoyo M, Alcaraz PE. New tool to control and monitor weighted vest training load for sprinting and jumping in soccer [published online ahead of print April 26, 2018]. J Strength Cond Res. PubMed ID: 29702519 doi:10.1519/JSC.0000000000002580

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267–272. PubMed ID: 26694658 doi:10.1123/ijspp.2015-0638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Spencer M, Pyne D, Santisteban J, Mujika I. Fitness determinants of repeated-sprint ability in highly trained youth football players. Int J Sports Physiol Perform. 2011;6(4):497–508. PubMed ID: 21937759 doi:10.1123/ijspp.6.4.497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Samozino P, Rabita G, Dorel S, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26(6):648–658. PubMed ID: 25996964 doi:10.1111/sms.12490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Suarez-Arrones L, Arenas C, López G, Requena B, Terrill O, Mendez-Villanueva A. Positional differences in match running performance and physical collisions in men rugby sevens. Int J Sports Physiol Perform. 2014;9(2):316–323. PubMed ID: 23881362 doi:10.1123/ijspp.2013-0069

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bosco C, Rusko H, Hirvonen J. The effect of extra-load conditioning on muscle performance in athletes. Med Sci Sports Exerc. 1986;18(4):415–419. PubMed ID: 3747801 doi:10.1249/00005768-198608000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tous-Fajardo J, Gonzalo-Skok O, Arjol-Serrano JL, Tesch P. Enhancing change-of-direction speed in soccer players by functional inertial eccentric overload and vibration training. Int J Sports Physiol Perform. 2016;11(1):66–73. PubMed ID: 25942419 doi:10.1123/ijspp.2015-0010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 239 239 19
Full Text Views 21 21 0
PDF Downloads 15 15 0