Recovery of Force–Time Characteristics After Australian Rules Football Matches: Examining the Utility of the Isometric Midthigh Pull

Click name to view affiliation

Dean Norris
Search for other papers by Dean Norris in
Current site
Google Scholar
PubMed
Close
,
David Joyce
Search for other papers by David Joyce in
Current site
Google Scholar
PubMed
Close
,
Jason Siegler
Search for other papers by Jason Siegler in
Current site
Google Scholar
PubMed
Close
,
James Clock
Search for other papers by James Clock in
Current site
Google Scholar
PubMed
Close
, and
Ric Lovell
Search for other papers by Ric Lovell in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: This study assessed the utility of force–time characteristics from the isometric midthigh pull (IMTP) as a measure of neuromuscular function after elite-level Australian rules football matches. It was hypothesized that rate characteristics of force development would demonstrate a different response magnitude and recovery time course than peak force measurements. Methods: Force–time characteristics of the IMTP (peak force, 0- to 50-ms rate of force development [RFD], 100- to 200-ms RFD) were collected at 48 (G+2), 72 (G+3), and 96 h (G+4) after 3 competitive Australian rules football matches. Results: Meaningful reductions (>75% of the smallest worthwhile change) were observed at G+2, G+3, and G+4 for RFD 0–50 milliseconds (−25.8%, −17.5%, and −16.9%) and at G+2 and G+3 for RFD 100–200 milliseconds (−15.7% and −11.7%). No meaningful reductions were observed for peak force at any time point (G+2 −4.0%, G+3 −3.9%, G+4 −2.7%). Higher week-to-week variation was observed for RFD 0–50 milliseconds (G+2 17.1%, G+3 27.2%, G+4 19.3%) vs both RFD 100–200 milliseconds (G+2 11.3%, G+3 11.5%, G+4 7.2%) and peak force (G+2 4.8%, G+3 4.4%, G+4 8.4%). Conclusions: These findings highlight the potential use of rate characteristics from the IMTP as measures of neuromuscular function in elite sport settings, and in particular RFD 100–200 milliseconds due to its higher reliability. Interestingly, peak force collected from the IMTP was not meaningfully suppressed at any time point after elite Australian rules football match play. This suggests that rate characteristics from IMTP may provide more sensitive and valuable insight regarding neuromuscular function recovery kinetics than peak measures.

Norris, Joyce, Siegler, and Lovell are with Western Sydney University, Penrith, NSW, Australia. Norris, Joyce, and Clock are with the GWS Giants, Sydney Olympic Park, Sydney, NSW, Australia.

Lovell (R.Lovell@westernsydney.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Rogalski B, Dawson B, Heasman J, Gabbett TJ. Training and game loads and injury risk in elite Australian footballers. J Sci Med Sport. 2013;16(6):499503. PubMed ID: 23333045 doi:10.1016/j.jsams.2012.12.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bourdon PC, Cardinale M, Murray A, et al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12(Suppl 2):21612170. PubMed ID: 28463642 doi:10.1123/IJSPP.2017-0208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(suppl 2):139147. doi:10.1007/s40279-014-0253-z

  • 4.

    Taylor K-L, Chapman DW, Cronin JB, Newton MJ, Gill N. Fatigue monitoring in high performance sport: a survey of current trends. J Aust Strength Cond. 2012;20(1):1213.

    • Search Google Scholar
    • Export Citation
  • 5.

    Twist C, Highton J. Monitoring fatigue and recovery in rugby league players. Int J Sports Physiol Perform. 2013;8(5):467474. doi:10.1123/ijspp.8.5.467

  • 6.

    Mooney MG, Cormack S, O’Brien BJ, Morgan WM, McGuigan M. Impact of neuromuscular fatigue on match exercise intensity and performance in elite Australian football. J Strength Cond Res. 2013;27(1):166173. PubMed ID: 22395264 doi:10.1519/JSC.0b013e3182514683

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Angelozzi M, Madama M, Corsica C, et al. Rate of force development as an adjunctive outcome measure for return-to-sport decisions after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):772780. doi:10.2519/jospt.2012.3780

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Byrne C, Twist C, Eston R. Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med. 2004;34(1):4969. PubMed ID: 14715039 doi:10.2165/00007256-200434010-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Johnston RD, Gabbett TJ, Jenkins DG, Hulin BT. Influence of physical qualities on post-match fatigue in rugby league players. J Sci Med Sport. 2015;18(2):209213. PubMed ID: 24594214 doi:10.1016/j.jsams.2014.01.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cormack SJ, Newton RU, McGuigan MR. Neuromuscular and endocrine responses of elite players to an Australian rules football match. Int J Sports Physiol Perform. 2008;3(3):359374. doi:10.1123/ijspp.3.3.359

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Thomas K, Dent J, Howatson G, Goodall S. Etiology and recovery of neuromuscular fatigue after simulated soccer match play. Med Sci Sports Exerc. 2017;49(5):955964. PubMed ID: 28060035 doi:10.1249/MSS.0000000000001196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gathercole RJ, Sporer BC, Stellingwerff T, Sleivert GG. Comparison of the capacity of different jump and sprint field tests to detect neuromuscular fatigue. J Strength Cond Res. 2015;29(9):25222531. PubMed ID: 26308829 doi:10.1519/JSC.0000000000000912

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cormie P, McBride JM, McCaulley GO. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: impact of training. J Strength Cond Res. 2009;23(1):177186. PubMed ID: 19077740 doi:10.1519/JSC.0b013e3181889324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gathercole R, Sporer B, Stellingwerff T, Sleivert G. Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. Int J Sports Physiol Perform. 2015;10(1):8492. PubMed ID: 24912201 doi:10.1123/ijspp.2013-0413

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gathercole RJ, Stellingwerff T, Sporer BC. Effect of acute fatigue and training adaptation on countermovement jump performance in elite snowboard cross athletes. J Strength Cond Res. 2015;29(1):3746. PubMed ID: 25029001 doi:10.1519/JSC.0000000000000622

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    James LP, Roberts LA, Haff GG, Kelly VG, Beckman EM. Validity and reliability of a portable isometric mid-thigh clean pull. J Strength Cond Res. 2017;31(5):13781386. PubMed ID: 28415068 doi:10.1519/JSC.0000000000001201

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Comfort P, Jones PA, McMahon JJ, Newton R. Effect of knee and trunk angle on kinetic variables during the isometric midthigh pull: test–retest reliability. Int J Sports Physiol Perform. 2015;10(1):5863. PubMed ID: 24912198 doi:10.1123/ijspp.2014-0077

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    McMaster DT, Gill N, Cronin J, McGuigan M. A brief review of strength and ballistic assessment methodologies in sport. Sports Med. 2014;44(5):603623. PubMed ID: 24497158 doi:10.1007/s40279-014-0145-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Haff GG, Stone M, O’Bryant HS, et al. Force-time dependent characteristics of dynamic and isometric muscle actions. J Strength Cond Res. 1997;11(4):269272.

    • Search Google Scholar
    • Export Citation
  • 20.

    Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):10911116. PubMed ID: 26941023 doi:10.1007/s00421-016-3346-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Peñailillo L, Blazevich A, Numazawa H, Nosaka K. Rate of force development as a measure of muscle damage. Scand J Med Sci Sports. 2015;25(3):417427. doi:10.1111/sms.12241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Folland JP, Buckthorpe MW, Hannah R. Human capacity for explosive force production: neural and contractile determinants. Scand J Med Sci Sports. 2014;24(6):894906. PubMed ID: 25754620 doi:10.1111/sms.12131

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93(4):13181326. PubMed ID: 12235031 doi:10.1152/japplphysiol.00283.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Andersen LL, Aagaard P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur J Appl Physiol. 2006;96(1):4652. PubMed ID: 16249918 doi:10.1007/s00421-005-0070-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Oliveira AS, Caputo F, Aagaard P, Corvino RB, Goncalves M, Denadai BS. Isokinetic eccentric resistance training prevents loss in mechanical muscle function after running. Eur J Appl Physiol. 2013;113(9):23012311. PubMed ID: 23680937 doi:10.1007/s00421-013-2660-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Crameri RM, Aagaard P, QvortrUp K, Langberg H, Olesen J, Kjaer M. Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. J Physiol. 2007;583(1):365380. doi:10.1113/jphysiol.2007.128827

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Carling C, Lacome M, McCall A, et al. Monitoring of post-match fatigue in professional soccer: welcome to the real world. Sports Med. 2018;48:26952702. doi:10.1007/s40279-018-0935-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):48. doi:10.18637/jss.v067i01

  • 29.

    Lenth RV. Least-squares means: the R package lsmeans. J Stat Softw. 2016;69(1):33. doi:10.18637/jss.v069.i01

  • 30.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hopkins WG. Reliability From Construct Pairs of Trials (Excel Spreadsheet) . Sportsci.org; 2000.

  • 32.

    Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. The influence of soccer playing actions on the recovery kinetics after a soccer match. J Strength Cond Res. 2014;28(6):15171523. PubMed ID: 24172722 doi:10.1519/JSC.0000000000000293

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Rampinini E, Bosio A, Ferraresi I, Petruolo A, Morelli A, Sassi A. Match-related fatigue in soccer players. Med Sci Sports Exerc. 2011;43(11):21612170. PubMed ID: 21502891 doi:10.1249/MSS.0b013e31821e9c5c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Edman KAP, Josephson RK. Determinants of force rise time during isometric contraction of frog muscle fibres. J Physiol. 2007;580(pt 3):10071019. PubMed ID: 17303645 doi:10.1113/jphysiol.2006.119982

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Haff GG, Ruben RP, Lider J, Twine C, Cormie P. A comparison of methods for determining the rate of force development during isometric midthigh clean pulls. J Strength Cond Res. 2015;29(2):386395. PubMed ID: 25259470 doi:10.1519/JSC.0000000000000705

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Rodriguez-Rosell D, Pareja-Blanco F, Aagaard P, Gonzalez-Badillo JJ. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin Physiol Funct Imaging. 2018;38(5):743762. doi:10.1111/cpf.12495

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Kempton T, Sullivan C, Bilsborough JC, Cordy J, Coutts AJ. Match-to-match variation in physical activity and technical skill measures in professional Australian football. J Sci Med Sport. 2015;18(1):109113. PubMed ID: 24444753 doi:10.1016/j.jsams.2013.12.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2939 677 24
Full Text Views 110 40 14
PDF Downloads 87 27 11