Recovery of Force–Time Characteristics After Australian Rules Football Matches: Examining the Utility of the Isometric Midthigh Pull

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: This study assessed the utility of force–time characteristics from the isometric midthigh pull (IMTP) as a measure of neuromuscular function after elite-level Australian rules football matches. It was hypothesized that rate characteristics of force development would demonstrate a different response magnitude and recovery time course than peak force measurements. Methods: Force–time characteristics of the IMTP (peak force, 0- to 50-ms rate of force development [RFD], 100- to 200-ms RFD) were collected at 48 (G+2), 72 (G+3), and 96 h (G+4) after 3 competitive Australian rules football matches. Results: Meaningful reductions (>75% of the smallest worthwhile change) were observed at G+2, G+3, and G+4 for RFD 0–50 milliseconds (−25.8%, −17.5%, and −16.9%) and at G+2 and G+3 for RFD 100–200 milliseconds (−15.7% and −11.7%). No meaningful reductions were observed for peak force at any time point (G+2 −4.0%, G+3 −3.9%, G+4 −2.7%). Higher week-to-week variation was observed for RFD 0–50 milliseconds (G+2 17.1%, G+3 27.2%, G+4 19.3%) vs both RFD 100–200 milliseconds (G+2 11.3%, G+3 11.5%, G+4 7.2%) and peak force (G+2 4.8%, G+3 4.4%, G+4 8.4%). Conclusions: These findings highlight the potential use of rate characteristics from the IMTP as measures of neuromuscular function in elite sport settings, and in particular RFD 100–200 milliseconds due to its higher reliability. Interestingly, peak force collected from the IMTP was not meaningfully suppressed at any time point after elite Australian rules football match play. This suggests that rate characteristics from IMTP may provide more sensitive and valuable insight regarding neuromuscular function recovery kinetics than peak measures.

Norris, Joyce, Siegler, and Lovell are with Western Sydney University, Penrith, NSW, Australia. Norris, Joyce, and Clock are with the GWS Giants, Sydney Olympic Park, Sydney, NSW, Australia.

Lovell (R.Lovell@westernsydney.edu.au) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Rogalski BDawson BHeasman JGabbett TJ. Training and game loads and injury risk in elite Australian footballers. J Sci Med Sport. 2013;16(6):499503. PubMed ID: 23333045 doi:10.1016/j.jsams.2012.12.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bourdon PCCardinale MMurray Aet al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12(Suppl 2):21612170. PubMed ID: 28463642 doi:10.1123/IJSPP.2017-0208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(suppl 2):139147. doi:10.1007/s40279-014-0253-z

  • 4.

    Taylor K-LChapman DWCronin JBNewton MJGill N. Fatigue monitoring in high performance sport: a survey of current trends. J Aust Strength Cond. 2012;20(1):1213.

    • Search Google Scholar
    • Export Citation
  • 5.

    Twist CHighton J. Monitoring fatigue and recovery in rugby league players. Int J Sports Physiol Perform. 2013;8(5):467474. doi:10.1123/ijspp.8.5.467

  • 6.

    Mooney MGCormack SO’Brien BJMorgan WMMcGuigan M. Impact of neuromuscular fatigue on match exercise intensity and performance in elite Australian football. J Strength Cond Res. 2013;27(1):166173. PubMed ID: 22395264 doi:10.1519/JSC.0b013e3182514683

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Angelozzi MMadama MCorsica Cet al. Rate of force development as an adjunctive outcome measure for return-to-sport decisions after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):772780. doi:10.2519/jospt.2012.3780

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Byrne CTwist CEston R. Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med. 2004;34(1):4969. PubMed ID: 14715039 doi:10.2165/00007256-200434010-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Johnston RDGabbett TJJenkins DGHulin BT. Influence of physical qualities on post-match fatigue in rugby league players. J Sci Med Sport. 2015;18(2):209213. PubMed ID: 24594214 doi:10.1016/j.jsams.2014.01.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cormack SJNewton RUMcGuigan MR. Neuromuscular and endocrine responses of elite players to an Australian rules football match. Int J Sports Physiol Perform. 2008;3(3):359374. doi:10.1123/ijspp.3.3.359

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Thomas KDent JHowatson GGoodall S. Etiology and recovery of neuromuscular fatigue after simulated soccer match play. Med Sci Sports Exerc. 2017;49(5):955964. PubMed ID: 28060035 doi:10.1249/MSS.0000000000001196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gathercole RJSporer BCStellingwerff TSleivert GG. Comparison of the capacity of different jump and sprint field tests to detect neuromuscular fatigue. J Strength Cond Res. 2015;29(9):25222531. PubMed ID: 26308829 doi:10.1519/JSC.0000000000000912

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cormie PMcBride JMMcCaulley GO. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: impact of training. J Strength Cond Res. 2009;23(1):177186. PubMed ID: 19077740 doi:10.1519/JSC.0b013e3181889324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gathercole RSporer BStellingwerff TSleivert G. Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. Int J Sports Physiol Perform. 2015;10(1):8492. PubMed ID: 24912201 doi:10.1123/ijspp.2013-0413

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gathercole RJStellingwerff TSporer BC. Effect of acute fatigue and training adaptation on countermovement jump performance in elite snowboard cross athletes. J Strength Cond Res. 2015;29(1):3746. PubMed ID: 25029001 doi:10.1519/JSC.0000000000000622

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    James LPRoberts LAHaff GGKelly VGBeckman EM. Validity and reliability of a portable isometric mid-thigh clean pull. J Strength Cond Res. 2017;31(5):13781386. PubMed ID: 28415068 doi:10.1519/JSC.0000000000001201

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Comfort PJones PAMcMahon JJNewton R. Effect of knee and trunk angle on kinetic variables during the isometric midthigh pull: test–retest reliability. Int J Sports Physiol Perform. 2015;10(1):5863. PubMed ID: 24912198 doi:10.1123/ijspp.2014-0077

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    McMaster DTGill NCronin JMcGuigan M. A brief review of strength and ballistic assessment methodologies in sport. Sports Med. 2014;44(5):603623. PubMed ID: 24497158 doi:10.1007/s40279-014-0145-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Haff GGStone MO’Bryant HSet al. Force-time dependent characteristics of dynamic and isometric muscle actions. J Strength Cond Res. 1997;11(4):269272.

    • Search Google Scholar
    • Export Citation
  • 20.

    Maffiuletti NAAagaard PBlazevich AJFolland JTillin NDuchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):10911116. PubMed ID: 26941023 doi:10.1007/s00421-016-3346-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Peñailillo LBlazevich ANumazawa HNosaka K. Rate of force development as a measure of muscle damage. Scand J Med Sci Sports. 2015;25(3):417427. doi:10.1111/sms.12241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Folland JPBuckthorpe MWHannah R. Human capacity for explosive force production: neural and contractile determinants. Scand J Med Sci Sports. 2014;24(6):894906. PubMed ID: 25754620 doi:10.1111/sms.12131

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Aagaard PSimonsen EBAndersen JLMagnusson PDyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93(4):13181326. PubMed ID: 12235031 doi:10.1152/japplphysiol.00283.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Andersen LLAagaard P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur J Appl Physiol. 2006;96(1):4652. PubMed ID: 16249918 doi:10.1007/s00421-005-0070-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Oliveira ASCaputo FAagaard PCorvino RBGoncalves MDenadai BS. Isokinetic eccentric resistance training prevents loss in mechanical muscle function after running. Eur J Appl Physiol. 2013;113(9):23012311. PubMed ID: 23680937 doi:10.1007/s00421-013-2660-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Crameri RMAagaard PQvortrUp KLangberg HOlesen JKjaer M. Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. J Physiol. 2007;583(1):365380. doi:10.1113/jphysiol.2007.128827

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Carling CLacome MMcCall Aet al. Monitoring of post-match fatigue in professional soccer: welcome to the real world. Sports Med. 2018;48:26952702. doi:10.1007/s40279-018-0935-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bates DMächler MBolker BWalker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):48. doi:10.18637/jss.v067i01

  • 29.

    Lenth RV. Least-squares means: the R package lsmeans. J Stat Softw. 2016;69(1):33. doi:10.18637/jss.v069.i01

  • 30.

    Batterham AMHopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hopkins WG. Reliability From Construct Pairs of Trials (Excel Spreadsheet). Sportsci.org; 2000.

  • 32.

    Nedelec MMcCall ACarling CLegall FBerthoin SDupont G. The influence of soccer playing actions on the recovery kinetics after a soccer match. J Strength Cond Res. 2014;28(6):15171523. PubMed ID: 24172722 doi:10.1519/JSC.0000000000000293

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Rampinini EBosio AFerraresi IPetruolo AMorelli ASassi A. Match-related fatigue in soccer players. Med Sci Sports Exerc. 2011;43(11):21612170. PubMed ID: 21502891 doi:10.1249/MSS.0b013e31821e9c5c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Edman KAPJosephson RK. Determinants of force rise time during isometric contraction of frog muscle fibres. J Physiol. 2007;580(pt 3):10071019. PubMed ID: 17303645 doi:10.1113/jphysiol.2006.119982

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Haff GGRuben RPLider JTwine CCormie P. A comparison of methods for determining the rate of force development during isometric midthigh clean pulls. J Strength Cond Res. 2015;29(2):386395. PubMed ID: 25259470 doi:10.1519/JSC.0000000000000705

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Rodriguez-Rosell DPareja-Blanco FAagaard PGonzalez-Badillo JJ. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle. Clin Physiol Funct Imaging. 2018;38(5):743762. doi:10.1111/cpf.12495

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Kempton TSullivan CBilsborough JCCordy JCoutts AJ. Match-to-match variation in physical activity and technical skill measures in professional Australian football. J Sci Med Sport. 2015;18(1):109113. PubMed ID: 24444753 doi:10.1016/j.jsams.2013.12.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 147 147 28
Full Text Views 13 13 2
PDF Downloads 8 8 1
Altmetric Badge
PubMed
Google Scholar