Relationships Between Physical Testing and Match Activity Profiles Across the Australian Football League Participation Pathway

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To establish levels of association between physical fitness and match activity profiles of players in the Australian Football League (AFL) participation pathway. Methods: Players (N = 287, range 10.9–19.1 y) were assessed on 20-m sprint, AFL agility, vertical jump and running vertical jump, 20-m multistage fitness test (MSFT), and Athletic Abilities Assessment. Match activity profiles were obtained from global positioning system measures: relative speed, maximal velocity, and relative high-speed running. Results: Correlational analyses revealed moderate relationships between sprint (r = .32–.57, P ≤ .05) and jump test scores (r = .34–.78, P ≤ .05) and match activity profiles in Local U12, Local U14, National U16, and National U18s, except jump tests in National U18s. AFL agility was also moderate to strongly associated in Local U12, Local U14, Local U18, and National U16s (r = .37–.87, P ≤ .05) and strongly associated with relative speed in Local U18s (r = .84, P ≤ .05). Match relative speed and high-speed running were moderate to strongly associated with 20-m MSFT in Local U14, Local U18, and National U18s (r = .41–.95, P ≤ .05) and Athletic Abilities Assessment in Local U12 and Local U18s (r = .35–.67, P ≤ .05). Match activity profile demands increased between Local U12 and National U16s, then plateaued. Conclusions: Physical fitness relates more strongly to match activity profiles in younger adolescent and national-level players. Recruiters should consider adolescent physical fitness and match activity profiles as dynamic across the AFL participation pathway.

Haycraft, Kovalchik, and Robertson are with the Inst for Health & Sport (IHES), Victoria University, Melbourne, VIC, Australia. Pyne is with the Research Inst for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia.

Robertson (sam.robertson@vu.edu.au) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Pyne DBGardner ASSheehan KHopkins WG. Fitness testing and career progression in AFL football. J Sci Med Sport. 2005;8(3):321332. PubMed ID: 16248473 doi:10.1016/S1440-2440(05)80043-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Woods CTERaynor AJBruce LMcDonald ZCollier N. Predicting playing status in junior Australian football using physical and anthropometric parameters. J Sci Med Sport. 2015;18(2):225229. PubMed ID: 24613146 doi:10.1016/j.jsams.2014.02.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Haycraft JAZKovalchik SPyne DBRobertson S. Physical characteristics of players within the Australian Football League participation pathways: a systematic review. Sports Med Open. 2017;3(1):46. PubMed ID: 29260420 doi:10.1186/s40798-017-0109-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lockie RGSchultz ABJordan CACallaghan SJJeffriess MDLuczo TM. Can selected functional movement screen assessments be used to identify movement deficiencies that could affect multidirectional speed and jump performance? J Strength Cond Res. 2015;29(1):195205. PubMed ID: 25028993 doi:10.1519/JSC.0000000000000613

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Pyne DBGardner ASSheehan KHopkins WG. Positional differences in fitness and anthropometric characteristics in Australian football. J Sci Med Sport. 2006;9(1):143150. PubMed ID: 16580878 doi:10.1016/j.jsams.2005.10.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Gastin PBBennett GCook J. Biological maturity influences running performance in junior Australian football. J Sci Med Sport. 2013;16(2):140145. PubMed ID: 22727755 doi:10.1016/j.jsams.2012.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Tangalos CRobertson SSpittle MGastin PB. Predictors of individual player match performance in junior Australian football. Int J Sports Physiol Perform. 2015;10(7):853859. PubMed ID: 25671555 doi:10.1123/ijspp.2014-0428

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bauer AMYoung WFahrner BHarvey J. GPS variables most related to match performance in an elite Australian football team. Int J Perform Anal Sport. 2015;15(1):187202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Brewer CDawson BHeasman JStewart GCormack S. Movement pattern comparisons in elite (AFL) and sub-elite (WAFL) Australian football games using GPS. J Sci Med Sport. 2010;13(6):618623. PubMed ID: 20434398 doi:10.1016/j.jsams.2010.01.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Burgess DNaughton GNorton K. Quantifying the gap between under 18 and senior AFL football: 2003 and 2009. Int J Sports Physiol Perform. 2012;7(1):5358. PubMed ID: 21998145 doi:10.1123/ijspp.7.1.53

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Coutts AJQuinn JHocking JCastagna CRampinini E. Match running performance in elite Australian Rules football. J Sci Med Sport. 2010;13(5):543548. PubMed ID: 19853508 doi:10.1016/j.jsams.2009.09.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wisbey BMontgomery PGPyne DBRattray B. Quantifying movement demands of AFL football using GPS tracking. J Sci Med Sport. 2010;13(5):531536. PubMed ID: 19897414 doi:10.1016/j.jsams.2009.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Davids KAraújo DHristovski RPassos PChow JY. Ecological dynamics and motor learning design in sport. In: Hodges NJWilliams AM eds. Skill Acquisition in Sport: Research Theory and Practice. 2nd ed. New York, NY: Routledge; 2012:112130.

    • Search Google Scholar
    • Export Citation
  • 14.

    Vilar LAraújo DDavids KButton C. The role of ecological dynamics in analysing performance in team sports. Sports Med. 2012;42(1):110. PubMed ID: 22149695 doi:10.2165/11596520-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Wattie NSchorer JBaker J. The relative age effect in sport: a developmental systems model. Sports Med. 2015;45(1):8394. PubMed ID: 25169442 doi:10.1007/s40279-014-0248-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    AFL Community. Australian football match policy. 2018. http://www.aflcommunityclub.com.au/index.php?id=32. Accessed May 9 2018.

    • Export Citation
  • 17.

    Silva PAguiar PDuarte RDavids KAraújo DGarganta J. Effects of pitch size and skill level on tactical behaviours of Association Football players during small-sided and conditioned games. Int J Sports Sci Coach. 2014;9(5):9931006. doi:10.1260/1747-9541.9.5.993

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Robertson SWoods CGastin P. Predicting higher selection in elite junior Australian Rules football: the influence of physical performance and anthropometric attributes. J Sci Med Sport. 2015;18(5):601606. PubMed ID: 25154704 doi:10.1016/j.jsams.2014.07.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    McKeown ITaylor-McKeown KWoods CBall N. Athletic ability assessment: a movement assessment protocol for athletes. Int J Sports Phys Ther. 2014;9(7):862873. PubMed ID: 25540702

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Woods CMcKeown IHaff GGRobertson S. Comparison of athletic movement between elite junior and senior Australian football players. J Sports Sci. 2015;34(13):12601265. PubMed ID: 26525174 doi:10.1080/02640414.2015.1107185

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6(4):284290. doi:10.1037/1040-3590.6.4.284

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Coutts AJDuffield R. Validity and reliability of GPS devices for measuring movement demands of team sports. J Sci Med Sport. 2010;13(1):133135. PubMed ID: 19054711 doi:10.1016/j.jsams.2008.09.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Altman DGGardner MJ. Statistics in medicine: calculating confidence intervals for regression and correlation. Br Med J. 1988;296(6631):12381242. doi:10.1136/bmj.296.6631.1238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 25.

    Gabbett TKelly JPezet T. Relationship between physical fitness and playing ability in rugby league players. J Strength Cond Res. 2007;21(4):11261133. PubMed ID: 18076242

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Helgerud JEngen LCWisløff UHoff J. Aerobic endurance training improves soccer performance. Med Sci Sports Exerc. 2001;33(11):19251931. PubMed ID: 11689745 doi:10.1097/00005768-200111000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Waldron MMurphy A. A comparison of physical abilities and match performance characteristics among elite and subelite under-14 soccer players. Pediatr Exerc Sci. 2013;25(3):423434. PubMed ID: 23877584 doi:10.1123/pes.25.3.423

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Burgess DNaughton GHopkins W. Draft-camp predictors of subsequent career success in the Australian Football League. J Sci Med Sport. 2012;15(6):561567. PubMed ID: 22710084 doi:10.1016/j.jsams.2012.01.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Young WBPryor L. Relationship between pre-season anthropometric and fitness measures and indicators of playing performance in elite junior Australian Rules football. J Sci Med Sport. 2007;10(2):110118. PubMed ID: 16854624 doi:10.1016/j.jsams.2006.06.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Veale JPPearce AJCarlson JS. The Yo-Yo intermittent recovery test (level 1) to discriminate elite junior Australian football players. J Sci Med Sport. 2010;13(3):329331. PubMed ID: 19451033 doi:10.1016/j.jsams.2009.03.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Chalmers SFuller JTDebenedictis TAet al. Asymmetry during preseason Functional Movement Screen testing is associated with injury during a junior Australian football season. J Sci Med Sport. 2017;20(7):653657. PubMed ID: 28233674 doi:10.1016/j.jsams.2016.12.076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Woods CTBanyard HGMcKeown IFransen JRobertson S. Discriminating talent identified junior Australian footballers using a fundamental gross athletic movement assessment. J Sports Sci Med. 2016;15(3):548553. PubMed ID: 27803635

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Gaudion SLKenji DWade SHarry BGCarl WT. Identifying the physical fitness, anthropometric and athletic movement qualities discriminant of developmental level in elite junior Australian football: implications for the development of talent. J Strength Cond Res. 2017;31(7):18301839. PubMed ID: 27787473 doi:10.1519/JSC.0000000000001682

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Haycraft JAZKovalchik SPyne DBLarkin PRobertson S. The influence of age-policy changes on the relative age effect across the Australian Rules football talent pathway. J Sci Med Sport. 2018;21(10):11061111. PubMed ID: 29622491 doi:10.1016/j.jsams.2018.03.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Jones MAHitchen PJStratton G. The importance of considering biological maturity when assessing physical fitness measures in girls and boys aged 10 to 16 years. Ann Hum Biol. 2000;27(1):5765. PubMed ID: 10673141 doi:10.1080/030144600282389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Baker JCôté JAbernethy B. Sport-specific practice and the development of expert decision-making in team ball sports. J Appl Sport Psychol. 2003;15(1):1225. doi:10.1080/10413200305400

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Woods CTVeale JPCollier NRobertson S. The use of player physical and technical skill match activity profiles to predict position in the Australian Football League draft. J Sports Sci. 2017;35(4):325330. PubMed ID: 27014937 doi:10.1080/02640414.2016.1164334

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Vickery WMDascombe BJBaker JDHigham DGSpratford WADuffield R. Accuracy and reliability of GPS devices for measurement of sports-specific movement patterns related to cricket, tennis, and field-based team sports. J Strength Cond Res. 2014;28(6):16971705. PubMed ID: 24149747 doi:10.1519/JSC.0000000000000285

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Duffield RReid MBaker JSpratford W. Accuracy and reliability of GPS devices for measurement of movement patterns in confined spaces for court-based sports. J Sci Med Sport. 2010;13(5):523525. PubMed ID: 19853507 doi:10.1016/j.jsams.2009.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Sullivan CBilsborough JCCianciosi MHocking JCordy JCoutts AJ. Match score affects activity profile and skill performance in professional Australian Football players. J Sci Med Sport. 2014;17(3):326331. PubMed ID: 23770325 doi:10.1016/j.jsams.2013.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Couceiro MSDias GAraújo DDavids K. The ARCANE project: how an ecological dynamics framework can enhance performance assessment and prediction in football. Sports Med. 2016;46(12):17811786. PubMed ID: 27139724 doi:10.1007/s40279-016-0549-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 103 103 22
Full Text Views 15 15 1
PDF Downloads 13 13 1
Altmetric Badge
PubMed
Google Scholar