Does Night Training Load Affect Sleep Patterns and Nocturnal Cardiac Autonomic Activity in High-Level Female Soccer Players?

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To analyze whether exercise training conducted at night disturbs sleep and affects nocturnal cardiac autonomic control in high-level female athletes. Methods: A total of 18 high-level female soccer players (mean [SD] age 20.4 [2.1] y) wore actigraphs and heart-rate (HR) monitors during night sleep throughout night training days (n = 8) and resting days (n = 8), for 3 consecutive weeks. This was a longitudinal study that measured internal training load, sleep, nocturnal cardiac autonomic activity, and well-being ratings prior to training sessions. Results: Training load varied across training days (eg, training impulse range, mean [SD]; effect size, ES [95% confidence interval]: 72.9 [18.8] to 138.4 [29.6] a.u.; F4,62 = 32.331; ηp2=.673 [.001–.16], large effect; P < .001). However, no differences in subjective well-being ratings were observed, although ES was large. Total sleep time (training days vs resting days: 07:17 [00:47] h vs 07:51 [00:42] h; ES = 0.742 [0.59–0.92], P = .005; moderate effect) and sleep-onset time (00:58 [00:19] h vs 00:44 [00:16] h; ES = 0.802 [0.68–0.94], P = .001; moderate effect) were negatively affected after night training. In addition, small effects were detected for wake-up time, time in bed, and sleep latency (P > .05). No differences were detected in HR variability during sleep (range of lnRMSSD: 4.3 [0.4] to 4.5 [0.4] ln[ms] vs 4.6 [0.3] to 4.5 [0.4] ln[ms]; F3,52 = 2.148; P > .05; ηp2=.112 [.01–.25], medium effect), but HR during sleep was significantly higher after training days (range of HR: 56 [4] to 63 [7] beats/min vs 54 [4] to 57 [6] beats/min; F2,32 = 15.956; P < .001; ηp2=.484 [.20–.63], large effect). Conclusion: Overall, the results indicate that exercise training conducted at night may disturb sleep and affect HR, whereas limited effects can be expected in HR variability assessed during sleep in high-level female soccer players.

J. Costa, Oliveira, and Rebelo are with the Center of Research, Education, Innovation and Intervention in Sport, Faculty of Sports, and O. Costa, the Dept of Medicine, University of Porto, Porto, Portugal. Brito is with the Portugal Football School, Portuguese Football Federation, Oeiras, Portugal. Nakamura is with the Dept of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti–Pescara, Pescara, Italy, and the College of Healthcare Sciences, James Cook University, Townsville, QLD, Australia.

J. Costa (jahdc@hotmail.com) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Sargent CLastella MHalson SLRoach GD. The impact of training schedules on the sleep and fatigue of elite athletes. Chronobiol Int. 2014;31(10):11601168. PubMed ID: 25222347 doi:10.3109/07420528.2014.957306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Watson NFBadr MSBelenky Get al. Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep. 2015;38(6):843844. PubMed ID: 26039963

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Gupta LMorgan KGilchrist S. Does elite sport degrade sleep quality? A systematic review. Sports Med. 2017;47(7):13171333. PubMed ID: 27900583 doi:10.1007/s40279-016-0650-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Mah CDMah KEKezirian EJDement WC. The effects of sleep extension on the athletic performance of collegiate basketball players. Sleep. 2011;34(7):943950. PubMed ID: 21731144 doi:10.5665/SLEEP.1132

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kolling SSteinacker JMEndler SFerrauti AMeyer TKellmann M. The longer the better: sleep–wake patterns during preparation of the World Rowing Junior Championships. Chronobiol Int. 2016;33(1):7384. PubMed ID: 26730643 doi:10.3109/07420528.2015.1118384

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Costa JABrito JNakamura FYOliveira EMRebelo AN. Effects of late-night training on “slow-wave sleep episode” and hour-by-hour-derived nocturnal cardiac autonomic activity in female soccer players. Int J Sports Physiol Perform. 2018;13(5):638644. PubMed ID: 29345542 doi:10.1123/ijspp.2017-0681

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Al Haddad HLaursen PBAhmaidi SBuchheit M. Nocturnal heart rate variability following supramaximal intermittent exercise. Int J Sports Physiol Perform. 2009;4(4):435447. PubMed ID: 20029095 doi:10.1123/ijspp.4.4.435

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Esco MRFlatt AANakamura FY. Initial weekly HRV response is related to the prospective change in VO2max in female soccer players. Int J Sports Med. 2016;37(6):436441. PubMed ID: 27042998 doi:10.1055/s-0035-1569342

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bricout VADechenaud SFavre-Juvin A. Analyses of heart rate variability in young soccer players: the effects of sport activity. Auton Neurosci. 2010;154(1–2):112116. PubMed ID: 20061188 doi:10.1016/j.autneu.2009.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Myllymaki TKyrolainen HSavolainen Ket al. Effects of vigorous late-night exercise on sleep quality and cardiac autonomic activity. J Sleep Res. 2011;20(1 pt 2):146153. PubMed ID: 20673290 doi:10.1111/j.1365-2869.2010.00874.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Fullagar HHSkorski SDuffield RJulian RBartlett JMeyer T. Impaired sleep and recovery after night matches in elite football players. J Sports Sci. 2016;34(14):13331339. PubMed ID: 26750446 doi:10.1080/02640414.2015.1135249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sargent CHalson SRoach GD. Sleep or swim? Early-morning training severely restricts the amount of sleep obtained by elite swimmers. Eur J Sport Sci. 2014;14(suppl 1):310315. doi:10.1080/17461391.2012.696711

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Robey EDawson BHalson SGregson WGoodman CEastwood P. Sleep quantity and quality in elite youth soccer players: a pilot study. Eur J Sport Sci. 2014;14(5):410417. PubMed ID: 24093813 doi:10.1080/17461391.2013.843024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Fullagar HHDuffield RSkorski SCoutts AJJulian RMeyer T. Sleep and recovery in team sport: current sleep-related issues facing professional team-sport athletes. Int J Sports Physiol Perform. 2015;10(8):950957. PubMed ID: 25756787 doi:10.1123/ijspp.2014-0565

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(suppl 2):139147. doi:10.1007/s40279-014-0253-z

  • 16.

    Casamichana DCastellano JCalleja-Gonzalez JSan Roman JCastagna C. Relationship between indicators of training load in soccer players. J Strength Cond Res. 2013;27(2):369374. PubMed ID: 22465992 doi:10.1519/JSC.0b013e3182548af1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Impellizzeri FMRampinini ECoutts AJSassi AMarcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):10421047. PubMed ID: 15179175 doi:10.1249/01.MSS.0000128199.23901.2F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Flatt AAEsco MRNakamura FY. Association between subjective indicators of recovery status and heart rate variability among Divison-1 sprint-swimmers. Sports. 2018;6(3):93. doi:10.3390/sports6030093

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Werner GGFord BQMauss IBSchabus MBlechert JWilhelm FH. High cardiac vagal control is related to better subjective and objective sleep quality. Biol Psychol. 2015;106:7985. PubMed ID: 25709072 doi:10.1016/j.biopsycho.2015.02.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Rae DEStephenson KJRoden LC. Factors to consider when assessing diurnal variation in sports performance: the influence of chronotype and habitual training time-of-day. Eur J Appl Physiol. 2015;115(6):13391349. PubMed ID: 25631930 doi:10.1007/s00421-015-3109-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Vitale JABanfi GGalbiati AFerini-Strambi LLa Torre A. Effect of a night game on actigraphy-based sleep quality and perceived recovery in top-level volleyball athletes. Int J Sports Physiol Perform. 2019;14(2):265269. doi:10.1123/ijspp.2018-0194

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Myllymaki TRusko HSyvaoja HJuuti TKinnunen MLKyrolainen H. Effects of exercise intensity and duration on nocturnal heart rate variability and sleep quality. Eur J Appl Physiol. 2012;112(3):801809. PubMed ID: 21667290 doi:10.1007/s00421-011-2034-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Bangsbo J. The physiology of soccer—with special reference to intense intermittent exercise. Acta Physiol Scand Suppl. 1994;619:1155. PubMed ID: 8059610

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Banister E. Modeling elite athletic performance. In: MacDougall JDWenger HAGreen HJ eds. Physiological Testing of the High-Performance Athlete. Champaign, IL: Human Kinetics; 1991:403424.

    • Search Google Scholar
    • Export Citation
  • 25.

    Hooper SLMackinnon LTHoward AGordon RDBachmann AW. Markers for monitoring overtraining and recovery. Med Sci Sports Exerc. 1995;27(1):106112. PubMed ID: 7898325 doi:10.1249/00005768-199501000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Staunton CGordon BCustovic EStanger JKingsley M. Sleep patterns and match performance in elite Australian basketball athletes. J Sci Med Sport. 2017;20(8):786789. PubMed ID: 28169152 doi:10.1016/j.jsams.2016.11.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Alsaadi SMMcAuley JHHush JMet al. Assessing sleep disturbance in low back pain: the validity of portable instruments. PLoS ONE. 2014;9(4):e95824. PubMed ID: 24763506 doi:10.1371/journal.pone.0095824

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Paquet JKawinska ACarrier J. Wake detection capacity of actigraphy during sleep. Sleep. 2007;30(10):13621369. PubMed ID: 17969470 doi:10.1093/sleep/30.10.1362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Sadeh ASharkey KMCarskadon MA. Activity-based sleep–wake identification: an empirical test of methodological issues. Sleep. 1994;17(3):201207. PubMed ID: 7939118 doi:10.1093/sleep/17.3.201

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Parak JKorhonen I. Accuracy of Firstbeat BodyGuard 2 beat-to-beat heart rate monitor. 2015. https://www.firstbeat.com/app/uploads/2015/10/white_paper_bodyguard2_final.pdf. Accessed May 8 2017.

    • PubMed
    • Export Citation
  • 31.

    Tarvainen MPNiskanen JPLipponen JARanta-Aho POKarjalainen PA. Kubios HRV—heart rate variability analysis software. Comput Methods Programs Biomed. 2014;113(1):210220. PubMed ID: 24054542 doi:10.1016/j.cmpb.2013.07.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    TaskForce. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):10431065. doi:10.1161/01.CIR.93.5.1043

    • Search Google Scholar
    • Export Citation
  • 33.

    Mourot LBouhaddi MPerrey Set al. Decrease in heart rate variability with overtraining: assessment by the Poincare plot analysis. Clin Physiol Funct Imaging. 2004;24(1):1018. PubMed ID: 14717743 doi:10.1046/j.1475-0961.2003.00523.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hopkins WG. Statistics in observational studies. In: Verhagen Evan Mechelen W eds. Methodology in Sports Injury Research. Oxford, UK: OUP; 2009:6981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    O’Donnell SBird SJacobson GDriller M. Sleep and stress hormone responses to training and competition in elite female athletes. Eur J Sport Sci. 2018;18(5):611618.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Juliff LEHalson SLPeiffer JJ. Understanding sleep disturbance in athletes prior to important competitions. J Sci Med Sport. 2015;18(1):1318. PubMed ID: 24629327 doi:10.1016/j.jsams.2014.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Nedelec MHalson SAbaidia AEAhmaidi SDupont G. Stress, sleep and recovery in elite soccer: a critical review of the literature. Sports Med. 2015;45(10):13871400. PubMed ID: 26206724 doi:10.1007/s40279-015-0358-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Cajochen C. Alerting effects of light. Sleep Med Rev. 2007;11(6):453464. PubMed ID: 17936041 doi:10.1016/j.smrv.2007.07.009

  • 39.

    Rabbani ABaseri MKReisi JClemente FMKargarfard M. Monitoring collegiate soccer players during a congested match schedule: heart rate variability versus subjective wellness measures. Physiol Behav. 2018;194:527531. PubMed ID: 29981763 doi:10.1016/j.physbeh.2018.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Juliff LEPeiffer JJHalson SL. Night games and sleep: physiological, neuroendocrine, and psychometric mechanisms. Int J Sports Physiol Perform. 2018;13(7):867873. PubMed ID: 29252066 doi:10.1123/ijspp.2016-0809

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Vitale JABonato MGalasso Let al. Sleep quality and high intensity interval training at two different times of day: a crossover study on the influence of the chronotype in male collegiate soccer players. Chronobiol Int. 2017;34(2):260268. PubMed ID: 27906554 doi:10.1080/07420528.2016.1256301

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Bonato MAgnello LGalasso Let al. Acute modification of cardiac autonomic function of high-intensity interval training in collegiate male soccer players with different chronotype: a cross-over study. J Sports Sci Med. 2017;16(2):286294. PubMed ID: 28630583

    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 190 190 32
Full Text Views 13 13 4
PDF Downloads 10 10 4
Altmetric Badge
PubMed
Google Scholar