Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To investigate the effects of repeated-sprint training in hypoxia vs in normoxia on world-level male rugby union players’ repeated-sprint ability (RSA) during an international competition period. Methods: A total of 19 players belonging to an international rugby union senior male national team performed 4 sessions of cycling repeated sprints (consisting of 3 × eight 10-s sprints with 20 s passive recovery) either in normobaric hypoxia (RSH, 3000 m; n = 10) or in normoxia (RSN, 300 m; n = 9) over a 2-wk period. Before and after the training intervention, RSA was evaluated using a cycling repeated-sprint test (6 × 10-s maximal sprint and 20-s passive recovery) performed in normoxia. Results: Significant interaction effects (all P < .05, ηp2>.37) between condition and time were found for RSA-related parameters. Compared with Pre, maximal power significantly improved at Post in RSH (12.84 [0.83] vs 13.63 [1.03] W·kg−1, P < .01, ηp2=.15) but not in RSN (13.17 [0.89] vs 13.00 [1.01] W·kg−1, P = .45, ηp2=.01). Mean power was also significantly enhanced from Pre to Post in RSH (11.15 [0.58] vs 11.86 [0.63] W·kg−1, P < .001, ηp2=.26), whereas it remained unchanged in RSN (11.54 [0.61] vs 11.75 [0.65] W·kg−1, P = .23, ηp2=.03). Conclusion: As few as 4 dedicated specific RSH sessions were beneficial to enhance repeated power production in world-level rugby union players. Although the improvement from RSA to game behavior remains unclear, this finding appears to be of practical relevance as only a short preparation window is available prior to international rugby union games.

Beard and Millet are with ISSUL, Inst of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland. Ashby and Chambers are with the National Centre of Excellence, Welsh Rugby Union, Vale of Glamorgan, Wales. Brocherie is with the Laboratory of Sport, Expertise and Performance, Research Dept, French Inst of Sport, Paris, France.

Beard (ajbeardo@hotmail.com) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Duthie GPyne DHooper S. Applied physiology and game analysis of rugby union. Sports Med. 2003;33(13):973991. PubMed ID: 14606925 doi:10.2165/00007256-200333130-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Quarrie KLHopkins WGAnthony MJGill ND. Positional demands of international rugby union: evaluation of player actions and movements. J Sci Med Sport. 2013;16(4):353359. PubMed ID: 22975233 doi:10.1016/j.jsams.2012.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Gabbett TJ. Influence of playing standard on the physical demands of professional rugby league. J Sports Sci. 2013;31(10):11251138. PubMed ID: 23432130 doi:10.1080/02640414.2013.773401

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Christensen PMKrustrup PGunnarsson TPKiilerich KNybo LBangsbo J. VO2 kinetics and performance in soccer players after intense training and inactivity. Med Sci Sports Exerc. 2011;43(9):17161724. PubMed ID: 21311360 doi:10.1249/MSS.0b013e318211c01a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Girard OMendez-Villanueva ABishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41(8):673694. PubMed ID: 21780851 doi:10.2165/11590550-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Brocherie FGirard OFaiss RMillet GP. Effects of repeated-sprint training in hypoxia on sea-level performance: a meta-analysis. Sports Med. 2017;47(8):16511660. PubMed ID: 28194720 doi:10.1007/s40279-017-0685-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Brocherie FGirard OFaiss RMillet GP. High-intensity intermittent training in hypoxia: a double-blinded, placebo-controlled field study in youth football players. J Strength Cond Res. 2015;29(1):226237. PubMed ID: 24978836 doi:10.1519/JSC.0000000000000590

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Faiss RWillis SBorn DPet al. Repeated double-poling sprint training in hypoxia by competitive cross-country skiers. Med Sci Sports Exerc. 2015;47(4):809817. PubMed ID: 25083727 doi:10.1249/MSS.0000000000000464

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Galvin HMCooke KSumners DPMileva KNBowtell JL. Repeated sprint training in normobaric hypoxia. Br J Sports Med. 2013;47(suppl 1):7479. doi:10.1136/bjsports-2013-092826

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Hamlin MJOlsen PDMarshall HCLizamore CAElliot CA. Hypoxic repeat sprint training improves rugby player’s repeated sprint but not endurance performance. Front Physiol. 2017;8:24. PubMed ID: 28223938 doi:10.3389/fphys.2017.00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Inness MWBillaut FAughey RJ. Team-sport athletes’ improvement of performance on the Yo-Yo Intermittent Recovery Test Level 2, but not of time-trial performance, with intermittent hypoxic training. Int J Sports Physiol Perform. 2016;11(1):1521. doi:10.1123/ijspp.2014-0246

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Montero DLundby C. Effects of exercise training in hypoxia versus normoxia on vascular health. Sports Med. 2016;46(11):17251736. PubMed ID: 27286988 doi:10.1007/s40279-016-0570-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Faiss RLeger BVesin JMet al. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS ONE. 2013;8(2):e56522. PubMed ID: 23437154 doi:10.1371/journal.pone.0056522

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Puype JVan Proeyen KRaymackers JMDeldicque LHespel P. Sprint interval training in hypoxia stimulates glycolytic enzyme activity. Med Sci Sports Exerc. 2013;45(11):21662174. PubMed ID: 23604068 doi:10.1249/MSS.0b013e31829734ae

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Winter EMMaughan RJ. Requirements for ethics approvals. J Sports Sci. 2009;27(10):985985. PubMed ID: 19847681 doi:10.1080/02640410903178344

  • 16.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum; 1988.

  • 17.

    Watt KKHopkins WGSnow RJ. Reliability of performance in repeated sprint cycling tests. J Sci Med Sport. 2002;5(4):354361. PubMed ID: 12585619 doi:10.1016/S1440-2440(02)80024-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hopker JMyers SJobson SABruce WPassfield L. Validity and reliability of the Wattbike cycle ergometer. Int J Sports Med. 2010;31(10):731736. PubMed ID: 20665423 doi:10.1055/s-0030-1261968

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Goods PSDawson BLanders GJGore CJPeeling P. No additional benefit of repeat-sprint training in hypoxia than in normoxia on sea-level repeat-sprint ability. J Sports Sci Med. 2015;14(3):681688. PubMed ID: 26336357

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lacome MPiscione JHager JPBourdin M. A new approach to quantifying physical demand in rugby union. J Sports Sci. 2014;32(3):290300. PubMed ID: 24016296 doi:10.1080/02640414.2013.823225

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 290 290 205
Full Text Views 25 25 16
PDF Downloads 13 13 8
Altmetric Badge
PubMed
Google Scholar
Cited By