The Moderating Role of Recovery Durations in High-Intensity Interval-Training Protocols

Click name to view affiliation

Patrick P.J.M. Schoenmakers
Search for other papers by Patrick P.J.M. Schoenmakers in
Current site
Google Scholar
PubMed
Close
,
Florentina J. Hettinga
Search for other papers by Florentina J. Hettinga in
Current site
Google Scholar
PubMed
Close
, and
Kate E. Reed
Search for other papers by Kate E. Reed in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Over recent years, multiple studies have tried to optimize the exercise intensity and duration of work intervals in high-intensity-interval training (HIIT) protocols. Although an optimal work interval is of major importance to facilitate training adaptations, an optimal HIIT protocol can only be achieved with an adequate recovery interval separating work bouts. Surprisingly, little research has focused on the acute responses and long-term impact of manipulating recovery intervals in HIIT sessions. This invited commentary therefore aimed to review and discuss the current literature and increase the understanding of the moderating role of recovery durations in HIIT protocols. Conclusion: The acute responses to manipulations in recovery durations in repeated-sprint training (RST), sprint interval training (SIT), and aerobic interval training (AIT) protocols have recently begun to receive scientific interest. However, limited studies have manipulated only the recovery duration in RST, SIT, or AIT protocols to analyze the role of recovery durations on long-term training adaptations. In RST and SIT, longer recovery intervals (≥80 s) facilitate higher workloads in subsequent work intervals (compared with short recovery intervals), while potentially lowering the aerobic stimulus of the training session. In AIT, the total physiological strain endured per training protocol appears not to be moderated by the recovery intervals, unless the recovery duration is too short. This invited commentary highlights that further empirical evidence on a variety of RST, SIT, and AIT protocols and in exercise modalities other than cycling is needed.

Schoenmakers and Reed are with the School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, United Kingdom. Hettinga is with the Dept of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, United Kingdom.

Reed (reedk@essex.ac.uk) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313338. PubMed ID: 23539308 doi:10.1007/s40279-013-0029-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Åstrand I, Åstrand P-O, Christensen EH, Hedman R. Intermittent muscular work. Acta Physiol Scand. 1960;48(3–4):448453. doi:10.1111/j.1748-1716.1960.tb01879.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Tschakert G, Hofmann P. High-intensity intermittent exercise: methodological and physiological aspects. Int J Sports Physiol Perform. 2013;8(6):600610. PubMed ID: 23799827 doi:10.1123/ijspp.8.6.600

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):10771084. PubMed ID: 22289907 doi:10.1113/jphysiol.2011.224725

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Baker JS, Van Praagh E, Gelsei M, Thomas M, Davies B. High-intensity intermittent cycle ergometer exercise: effect of recovery duration and resistive force selection on performance. Res Sports Med. 2007;15(2):7792. PubMed ID: 17578748 doi:10.1080/15438620601184190

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Brownstein CG, Ball D, Micklewright D, Gibson NV. The effect of maturation on performance during repeated sprints with self-selected versus standardized recovery intervals in youth footballers. Pediatr Exerc Sci. 2018;30(4):500505. PubMed ID: 30033816 doi:10.1123/pes.2017-0240

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gibson N, Brownstein C, Ball D, Twist C. Physiological, perceptual and performance responses associated with self-selected versus standardized recovery periods during a repeated sprint protocol in elite youth football players: a preliminary study. Pediatr Exerc Sci. 2017;29(2):186193. PubMed ID: 28050914 doi:10.1123/pes.2016-0130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Glaister M, Stone MH, Stewart AM, Hughes M, Moir GL. The influence of recovery duration on multiple sprint cycling performance. J Strength Cond Res. 2005;19(4):831837.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lee C-L, Cheng C-F, Lin J-C, Huang H-W. Caffeine’s effect on intermittent sprint cycling performance with different rest intervals. Eur J Appl Physiol. 2012;112(6):21072116. PubMed ID: 21960086 doi:10.1007/s00421-011-2181-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ohya T, Aramaki Y, Kitagawa K. Effect of duration of active or passive recovery on performance and muscle oxygenation during intermittent sprint cycling exercise. Int J Sports Med. 2013;34(07):616622. doi:10.1055/s-0032-1331717

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Padulo J, Tabben M, Ardigò LP, et al. Repeated sprint ability related to recovery time in young soccer players. Res Sport Med. 2015;23(4):412423. doi:10.1080/15438627.2015.1076419

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Shi Q, Tong TK, Sun S, et al. Influence of recovery duration during 6-s sprint interval exercise on time spent at high rates of oxygen uptake. J Exerc Sci Fit. 2018;16(1):1620. PubMed ID: 30662487 doi:10.1016/j.jesf.2018.01.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Gosselin LE, Kozlowski KF, DeVinney-Boymel L, Hambridge C. Metabolic response of different high-intensity aerobic interval exercise protocols. J Strength Cond Res. 2012;26(10):28662871. PubMed ID: 22124355 doi:10.1519/JSC.0b013e318241e13d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hazell TJ, MacPherson REK, Gravelle BMR, Lemon PWR. 10 or 30-S Sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol. 2010;110(1):153160. PubMed ID: 20424855 doi:10.1007/s00421-010-1474-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Iaia FM, Fiorenza M, Perri E, Alberti G, Millet GP, Bangsbo J. The effect of two speed endurance training regimes on performance of soccer players. PLoS ONE. 2015;10(9):0138096. PubMed ID: 26394225 doi:10.1371/journal.pone.0138096

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Kavaliauskas M, Aspe RR, Babraj J. High-intensity cycling training: the effect of work-to-rest intervals on running performance measures. J Strength Cond Res. 2015;29(8):22292236. PubMed ID: 26203737 doi:10.1519/JSC.0000000000000868

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    McEwan G, Arthur R, Phillips SM, Gibson NV, Easton C. Interval running with self-selected recovery: physiology, performance, and perception. Eur J Sport Sci. 2018;18(8):10581067. PubMed ID: 29842843 doi:10.1080/17461391.2018.1472811

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Toubekis AG, Douda HT, Tokmakidis SP. Influence of different rest intervals during active or passive recovery on repeated sprint swimming performance. Eur J Appl Physiol. 2005;93(5–6):694700. doi:10.1007/s00421-004-1244-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Edge J, Eynon N, McKenna MJ, Goodman CA, Harris RC, Bishop DJ. Altering the rest interval during high-intensity interval training does not affect muscle or performance adaptations. Exp Physiol. 2013;98(2):481490. PubMed ID: 22923232 doi:10.1113/expphysiol.2012.067603

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Edwards AM, Bentley MB, Mann ME, Seaholme TS. Self-pacing in interval training: a teleoanticipatory approach. Psychophysiology. 2011;48(1):136141. PubMed ID: 20536904 doi:10.1111/j.1469-8986.2010.01034.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Laurent CM, Vervaecke LS, Kutz MR, Green JM. Sex-specific responses to self-paced, high-intensity interval training with variable recovery periods. J Strength Cond Res. 2014;28(4):920927. PubMed ID: 23838976 doi:10.1519/JSC.0b013e3182a1f574

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG. Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc. 2002;34(11):18011807. PubMed ID: 12439086 doi:10.1249/01.MSS.0000036691.95035.7D

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Seiler S, Hetlelid KJ. The impact of rest duration on work intensity and RPE during interval training. Med Sci Sports Exerc. 2005;37(9):16011607. PubMed ID: 16177614

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Schoenmakers PPJ, Reed KE. The effects of recovery duration on physiological and perceptual responses of trained runners during four self-paced HIIT sessions. J Sci Med Sport. 2019;22(4):462466. doi:10.1016/J.JSAMS.2018.09.230

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Smilios I, Myrkos A, Zafeiridis A, Toubekis A, Spassis A, Tokmakidis SP. The effects of recovery duration during high-intensity interval exercise on time spent at high rates of oxygen consumption, oxygen kinetics and blood lactate. J Strength Cond Res. 2018;32(8):21832189. doi:10.1519/JSC.0000000000001904

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Zavorsky GS, Montgomery DL, Pearsall DJ. Effect of intense interval workouts on running economy using three recovery durations. Eur J Appl Physiol Occup Physiol. 1998;77(3):224230. PubMed ID: 9535583 doi:10.1007/s004210050326

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    McMahon S, Jenkins D. Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Med. 2002;32(12):761784. PubMed ID: 12238940

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Menzies P, Menzies C, McIntyre L, Paterson P, Wilson J, Kemi OJ. Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. J Sports Sci. 2010;28(9):975982. PubMed ID: 20544484 doi:10.1080/02640414.2010.481721

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Thevenet D, Tardieu M, Zouhal H, Jacob C, Abderrahman BA, Prioux J. Influence of exercise intensity on time spent at high percentage of maximal oxygen uptake during an intermittent session in young endurance-trained athletes. Eur J Appl Physiol. 2007;102(1):1926. PubMed ID: 17851682 doi:10.1007/s00421-007-0540-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6473 1223 144
Full Text Views 235 66 5
PDF Downloads 219 75 5