Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To examine the net oxygen cost, oxygen kinetics, and kinematics of level and uphill running in elite ultratrail runners. Methods: Twelve top-level ultradistance trail runners performed two 5-min stages of treadmill running (level, 0%, men 15 km·h−1, women 13 km·h−1; uphill, 12%, men 10 km·h−1, women 9 km·h−1). Gas exchanges were measured to obtain the net oxygen cost and assess oxygen kinetics. In addition, running kinematics were recorded with inertial measurement unit motion sensors on the wrist, head, belt, and foot. Results: Relationships resulted between level and uphill running regarding oxygen uptake (V˙O2), respiratory exchange ratio, net energy, and oxygen cost, as well as oxygen kinetics parameters of amplitude and time delay of the primary phase and time to reach V˙O2 steady state. Of interest, net oxygen cost demonstrated a significant correlation between level and uphill conditions (r = .826, P < .01). Kinematics parameters demonstrated relationships between level and uphill running, as well (including contact time, aerial time, stride frequency, and stiffness; all P < .01). Conclusion: This study indicated strong relationships between level and uphill values of net oxygen cost, the time constant of the primary phase of oxygen kinetics, and biomechanical parameters of contact and aerial time, stride frequency, and stiffness in elite mountain ultratrail runners. The results show that these top-level athletes are specially trained for uphill locomotion at the expense of their level running performance and suggest that uphill running is of utmost importance for success in mountain ultratrail races.

Willis, Borrani, and Millet are with the Faculty of Biology and Medicine, Inst of Sport Sciences, University of Lausanne (ISSUL), Lausanne, Switzerland. Gellaerts and Mariani are with Gait Up SA, Lausanne, Switzerland. Basset and Millet are with Ultra Sports Science Foundation, Pierre-Bénite, France.

Willis (sarah.willis@unil.ch) is corresponding author.
  • 1.

    di Prampero PE, Atchou G, Bruckner JC, Moia C. The energetics of endurance running. Eur J Appl Physiol Occup Physiol. 1986;55:259–266. PubMed ID: 3732253

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Saunders PU, Pyne DB, Telford RD, Hawley JA. Factors affecting running economy in trained distance runners. Sports Med. 2004;34:465–485. PubMed ID: 15233599 doi:10.2165/00007256-200434070-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Vernillo G, Millet GP, Millet GY. Does the running economy really increase after ultra-marathons? Front Physiol. 2017;8:783. PubMed ID: 29062284 doi:10.3389/fphys.2017.00783

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Beck ON, Kipp S, Byrnes WC, Kram R. Use aerobic energy expenditure instead of oxygen uptake to quantify exercise intensity and predict endurance performance. J Appl Physiol. 2018;125:672–674. PubMed ID: 29446709 doi:10.1152/japplphysiol.00940.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lucia A, Esteve-Lanao J, Oliván J, et al. Physiological characteristics of the best Eritrean runners-exceptional running economy. Appl Physiol Nutr Metab. 2006;31:530–540. PubMed ID: 17111007 doi:10.1139/h06-029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Millet GP. Economy is not sacrificed in ultramarathon runners. J Appl Physiol. 2012;113:686; author reply 687. PubMed ID: 22896682 doi:10.1152/japplphysiol.00642.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Vernillo G, Giandolini M, Edwards WB, et al. Biomechanics and physiology of uphill and downhill running. Sports Med. 2017;47:615–629. PubMed ID: 27501719 doi:10.1007/s40279-016-0605-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Balducci P, Clemencon M, Trama R, Blache Y, Hautier C. Performance factors in a mountain ultramarathon. Int J Sports Med. 2017;38:819–826. PubMed ID: 28799161 doi:10.1055/s-0043-112342

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Scheer V, Janssen TI, Vieluf S, Heitkamp HC. Predicting trail-running performance with laboratory exercise tests and field-based results. Int J Sports Physiol Perform. 2019;14(1):130–133. PubMed ID: 29952678 doi:10.1123/ijspp.2018-0390

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Ortiz ALR, Giovanelli N, Kram R. The metabolic costs of walking and running up a 30-degree incline: implications for vertical kilometer foot races. Eur J Appl Physiol. 2017;117:1869–1876. PubMed ID: 28695271 doi:10.1007/s00421-017-3677-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Minetti AE, Ardigo LP, Saibene F. Mechanical determinants of the minimum energy cost of gradient running in humans. J Exp Biol. 1994;195:211–225. PubMed ID: 7964412

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Breiner TJ, Ortiz ALR, Kram R. Level, uphill and downhill running economy values are strongly inter-correlated. Eur J Appl Physiol. 2019;119(1):257–264. PubMed ID: 30357515 doi:10.1007/s00421-018-4021-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Balducci P, Clémençon M, Morel B, Quiniou G, Saboul D, Hautier CA. Comparison of level and graded treadmill tests to evaluate endurance mountain runners. J Sports Sci Med. 2016;15:239–246. PubMed ID: 27274660

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Koppo K, Bouckaert J, Jones AM. Effects of training status and exercise intensity on phase II VO2 kinetics. Med Sci Sports Exerc. 2004;36:225–232. PubMed ID: 14767244 doi:10.1249/01.MSS.0000113473.48220.20

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Falbriard M, Meyer F, Mariani B, Millet GP, Aminian K. Accurate estimation of running temporal parameters using foot-worn inertial sensors. Front Physiol. 2018;9:610. PubMed ID: 29946263 doi:10.3389/fphys.2018.00610

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Savoldelli A, Fornasiero A, Trabucchi P, et al. The energetics during the World’s most challenging mountain ultra-marathon—a case study at the Tor des Geants®. Front Physiol. 2017;8:1003. PubMed ID: 29259560 doi:10.3389/fphys.2017.01003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Minetti AE, Moia C, Roi GS, Susta D, Ferretti G. Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol. 2002;93:1039–1046. PubMed ID: 12183501 doi:10.1152/japplphysiol.01177.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Giovanelli N, Ortiz AL, Henninger K, Kram R. Energetics of vertical kilometer foot races; is steeper cheaper? J Appl Physiol. 2016;120:370–375. PubMed ID: 26607247 doi:10.1152/japplphysiol.00546.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Scheer V, Ramme K, Reinsberger C, Heitkamp HC. VO2max testing in trail runners: is there a specific exercise test protocol? Int J Sports Med. 2018;39:456–461. PubMed ID: 29665614 doi: 10.1055/a-0577-4851

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 359 358 47
Full Text Views 27 27 4
PDF Downloads 11 11 2