The Impact of Preconditioning Strategies Designed to Improve 2000-m Rowing Ergometer Performance in Trained Rowers: A Systematic Review and Meta-Analysis

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: The 2000-m rowing-ergometer test is the most common measure of rowing performance. Because athletes use different intervention strategies for enhancing performance, investigating the effect of preconditioning strategies on the 2000-m test is of great relevance. This study evaluated the effects of different preconditioning strategies on 2000-m rowing-ergometer performance in trained rowers. Methods: A search of electronic databases (PubMed, Google Scholar, and Web of Science) identified 27 effects of different preconditioning strategies from 17 studies. Outcomes were calculated as percentage differences between control and experimental interventions, and data were presented as mean ± 90% confidence interval. Performance data were converted to the same metrics, that is, mean power. Meta-regression analyses were conducted to assess whether performance level or caffeine dose could affect the percentage change. Results: The overall beneficial effect on 2000-m mean power was 2.1% (90% confidence limit [CL] ±0.6%). Training status affected the percentage change with interventions, with a −1.1% (90% CL ±1.2%) possible small decrease for 1.0-W·kg−1 increment in performance baseline. Caffeine consumption most likely improves performance, with superior effect in higher doses (≥6 mg·kg−1). Sodium bicarbonate and beta-alanine consumption resulted in likely (2.6% [90% CL ±1.5%]) and very likely (1.4% [90% CL ±1.2%]) performance improvements, respectively. However, some preconditioning strategies such as heat acclimation, rehydration, and creatine resulted in small to moderate enhancements in 2000-m performance. Conclusions: Supplementation of caffeine and beta-alanine is a popular and effective strategy to improve 2000-m ergometer performance in trained rowers. Additional research is warranted to confirm the benefit of other strategies to 2000-m rowing-ergometer performance.

Turnes is with Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Brazil. Cruz is with the Human Performance Laboratory, São Paulo State University, São Paulo, Brazil. Caputo and De Aguiar are with the Human Performance Research Group, Center for Health Sciences and Sport, Santa Catarina State University, Florianópolis, Brazil.

Turnes (tiago.turnes@ufsc.br) is corresponding author.
  • 1.

    Maestu J, Jurimae J, Jurimae T. Monitoring of performance and training in rowing. Sports Med. 2005;35(7):597–617. PubMed ID: 16026173 doi:10.2165/00007256-200535070-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Smith TB, Hopkins WG. Measures of rowing performance. Sports Med. 2012;42(4):343–358. PubMed ID: 22401296 doi:10.2165/11597230-000000000-00000

  • 3.

    Schabort EJ, Hawley JA, Hopkins WG, Blum H. High reliability of performance of well-trained rowers on a rowing ergometer. J Sports Sci. 1999;17(8):627–632. PubMed ID: 10487463 doi:10.1080/026404199365650

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Soper C, Hume PA. Reliability of power output during rowing changes with ergometer type and race distance. Sports Biomech. 2004;3(2):237–248. PubMed ID: 15552583 doi:10.1080/14763140408522843

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Christensen PM, Shirai Y, Ritz C, Nordsborg NB. Caffeine and bicarbonate for speed. A meta-analysis of legal supplements potential for improving intense endurance exercise performance. Front Physiol. 2017;8:240. PubMed ID: 28536531 doi:10.3389/fphys.2017.00240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Sokmen B, Armstrong LE, Kraemer WJ, et al. Caffeine use in sports: considerations for the athlete. J Strength Cond Res. 2008;22(3):978–986. PubMed ID: 18438212 doi:10.1519/JSC.0b013e3181660cec

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Anderson ME, Bruce CR, Fraser SF, et al. Improved 2000-meter rowing performance in competitive oarswomen after caffeine ingestion. Int J Sport Nutr Exerc Metab. 2000;10(4):464–475. PubMed ID: 11099373 doi:10.1123/ijsnem.10.4.464

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Carr AJ, Gore CJ, Dawson B. Induced alkalosis and caffeine supplementation: effects on 2000-m rowing performance. Int J Sport Nutr Exerc Metab. 2011;21(5):357–364. PubMed ID: 21799214 doi:10.1123/ijsnem.21.5.357

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Bruce CR, Anderson ME, Fraser SF, et al. Enhancement of 2000-m rowing performance after caffeine ingestion. Med Sci Sports Exerc. 2000;32(11):1958–1963. PubMed ID: 11079528 doi:10.1097/00005768-200011000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Skinner TL, Jenkins DG, Coombes JS, Taaffe DR, Leveritt MD. Dose response of caffeine on 2000-m rowing performance. Med Sci Sports Exerc. 2010;42(3):571–576. PubMed ID: 19952822 doi:10.1249/MSS.0b013e3181b6668b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    McNaughton LR, Siegler J, Midgley A. Ergogenic effects of sodium bicarbonate. Curr Sports Med Rep. 2008;7(4):230–236. PubMed ID: 18607226 doi:10.1249/JSR.0b013e31817ef530

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Carr AJ, Slater GJ, Gore CJ, Dawson B, Burke LM. Reliability and effect of sodium bicarbonate: buffering and 2000-m rowing performance. Int J Sports Physiol Perform. 2012;7(2):152–160. PubMed ID: 22634964 doi:10.1123/ijspp.7.2.152

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hobson RM, Harris RC, Martin D, et al. Effect of beta-alanine, with and without sodium bicarbonate, on 2000-m rowing performance. Int J Sport Nutr Exerc Metab. 2013;23(5):480–487. PubMed ID: 23535873 doi:10.1123/ijsnem.23.5.480

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hobson RM, Harris RC, Martin D, et al. Effect of sodium bicarbonate supplementation on 2000-m rowing performance. Int J Sports Physiol Perform. 2014;9(1):139–144. PubMed ID: 23579002 doi:10.1123/ijspp.2013-0086

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kupcis PD, Slater GJ, Pruscino CL, Kemp JG. Influence of sodium bicarbonate on performance and hydration in lightweight rowing. Int J Sports Physiol Perform. 2012;7(1):11–18. PubMed ID: 21941012 doi:10.1123/ijspp.7.1.11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Baguet A, Bourgois J, Vanhee L, Achten E, Derave W. Important role of muscle carnosine in rowing performance. J Appl Physiol. 2010;109(4):1096–1101. doi:10.1152/japplphysiol.00141.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Slater GJ, Rice AJ, Sharpe K, Jenkins D, Hahn AG. Influence of nutrient intake after weigh-in on lightweight rowing performance. Med Sci Sports Exerc. 2007;39(1):184–191. PubMed ID: 17218901 doi:10.1249/01.mss.0000240319.16029.5f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Garrett AT, Creasy R, Rehrer NJ, Patterson MJ, Cotter JD. Effectiveness of short-term heat acclimation for highly trained athletes. Eur J Appl Physiol. 2012;112(5):1827–1837. PubMed ID: 21915701 doi:10.1007/s00421-011-2153-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Izquierdo-Gabarren M, Exposito RG, de Villarreal ES, Izquierdo M. Physiological factors to predict on traditional rowing performance. Eur J Appl Physiol. 2010;108(1):83–92. PubMed ID: 19756709 doi:10.1007/s00421-009-1186-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Boyett JC, Giersch GE, Womack CJ, et al. Time of day and training status both impact the efficacy of caffeine for short duration cycling performance. Nutrients. 2016;8(10):639. doi:10.3390/nu8100639

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Saunders B, Elliott-Sale K, Artioli GG, et al. Beta-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2017;51(8):658–669. PubMed ID: 27797728 doi:10.1136/bjsports-2016-096396

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bescos R, Sureda A, Tur JA, Pons A. The effect of nitric-oxide-related supplements on human performance. Sports Med. 2012;42(2):99–117. PubMed ID: 22260513 doi:10.2165/11596860-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–1012. PubMed ID: 19631508 doi:10.1016/j.jclinepi.2009.06.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Thomas J, French K. The use of meta-analysis in exercise and sport: a tutorial. Res Q Exerc Sport. 1986;57(3):196–204. doi:10.1080/02701367.1986.10605397

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hoon MW, Jones AM, Johnson NA, et al. The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2000-m rowing performance in trained athletes. Int J Sports Physiol Perform. 2014;9(4):615–620. PubMed ID: 24085341 doi:10.1123/ijspp.2013-0207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Ducker KJ, Dawson B, Wallman KE. Effect of beta-alanine supplementation on 2000-m rowing-ergometer performance. Int J Sport Nutr Exerc Metab. 2013;23(4):336–343. PubMed ID: 23239676 doi:10.1123/ijsnem.23.4.336

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mujika I, Gonzalez De Txabarri R, Pyne D. Effects of a new evaporative cooling solution during rowing in a warm environment. Int J Sports Physiol Perform. 2010;5(3):412–416. PubMed ID: 20861530 doi:10.1123/ijspp.5.3.412

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Nagasawa T, Nemoto I, Nakamura N, Iwatake J, Kuroda Y. Effects of creatine loading on rowing performance male. Jpn J Phys Fitness Sports Med. 2001;50(1):89–96. doi:10.7600/jspfsm1949.50.89

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Di Lieto C, Granata D, Compadretti GC, et al. Effect of the new nasal dilator DAN-Air® on nasal breathing and performance in elite rowers. Med Sport. 2013;66(3):10.

    • Search Google Scholar
    • Export Citation
  • 30.

    Martins AN, Artioli GG, Franchini E. Sodium citrate ingestion increases glycolytic activity but does not enhance 2000-m rowing performance. J Hum Sport Exerc. 2010;5(3):411–417. doi:10.4100/jhse.2010.53.11

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Slater GJ, Rice AJ, Sharpe K, et al. Impact of acute weight loss and/or thermal stress on rowing ergometer performance. Med Sci Sports Exerc. 2005;37(8):1387–1394. PubMed ID: 16118587 doi:10.1249/01.mss.0000174900.13358.7e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Borenstein M, Hedges L, Higgins J, Rothstein H. Introduction to Meta-Analysis. West Sussex, UK: Wiley; 2009.

  • 33.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Rothstein H, Sutton A, Borenstein M. Publication Bias in Meta-Analysis. The Trim and Fill Method. West Sussex, UK: Wiley; 2005.

  • 35.

    Gore CJ, Hopkins WG, Burge CM. Errors of measurement for blood volume parameters: a meta-analysis. J Appl Physiol. 2005;99(5):1745–1758. doi:10.1152/japplphysiol.00505.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Malcata RM, Hopkins WG. Variability of competitive performance of elite athletes: a systematic review. Sports Med. 2014;44(12):1763–1774. PubMed ID: 25108349 doi:10.1007/s40279-014-0239-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Kilduff LP, Finn CV, Baker JS, Cook CJ, West DJ. Preconditioning strategies to enhance physical performance on the day of competition. Int J Sports Physiol Perform. 2013;8(6):677–681. PubMed ID: 23689163 doi:10.1123/ijspp.8.6.677

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Hahn A, Bourdon P, Tanner R. Protocols for the physiological assessment of rowers. In: Gore C, ed. Physiological Tests for Elite Athletes. Champaign, IL: Human Kinetics; 2000:311–326.

    • Search Google Scholar
    • Export Citation
  • 39.

    Currell K, Jeukendrup AE. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008;38(4):297–316. PubMed ID: 18348590 doi:10.2165/00007256-200838040-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab. 2008;33(6):1319–1334. PubMed ID: 19088794 doi:10.1139/H08-130

  • 41.

    Davis JK, Green JM. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med. 2009;39(10):813–832. PubMed ID: 19757860 doi:10.2165/11317770-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Costill DL, Dalsky GP, Fink WJ. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports. 1978;10(3):155–158. PubMed ID: 723503

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Chesley A, Howlett RA, Heigenhauser GJ, Hultman E, Spriet LL. Regulation of muscle glycogenolytic flux during intense aerobic exercise after caffeine ingestion. Am J Physiol. 1998;275(2 Pt 2):R596–R603.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Ferre S. An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem. 2008;105(4):1067–1079. PubMed ID: 18088379 doi:10.1111/j.1471-4159.2007.05196.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Tarnopolsky MA. Effect of caffeine on the neuromuscular system: potential as an ergogenic aid. Appl Physiol Nutr Metab. 2008;33(6):1284–1289. PubMed ID: 19088790 doi:10.1139/H08-121

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Lindinger MI, Graham TE, Spriet LL. Caffeine attenuates the exercise-induced increase in plasma [K+] in humans. J Appl Physiol. 1993;74(3):1149–1155. doi:10.1152/jappl.1993.74.3.1149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Graham TE, Spriet LL. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol. 1995;78(3):867–874. doi:10.1152/jappl.1995.78.3.867

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Sale C, Saunders B, Harris RC. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids. 2010;39(2):321–333. PubMed ID: 20091069 doi:10.1007/s00726-009-0443-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Syrotuik DG, Game AB, Gillies EM, Bell GJ. Effects of creatine monohydrate supplementation during combined strength and high intensity rowing training on performance. Can J Appl Physiol. 2001;26(6):527–542. PubMed ID: 11842271 doi:10.1139/h01-029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 279 279 54
Full Text Views 40 40 9
PDF Downloads 20 20 1