Velocity and Power–Load Association of Bench-Press Exercise in Wheelchair Basketball Players and their Relationships With Field-Test Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To analyze the relationship between mean propulsive velocity (MPV) of the bar and relative load (percentage of the 1-repetition maximum [%1RM]) in the bench-press (BP) exercise and to determine the relationship of power variables (ie, mean concentric power [MP], mean propulsive power [MPP], and peak power [PP]) in change-of-direction ability, linear sprint, and repeated-sprint ability. Methods: A total of 9 Spanish First Division wheelchair basketball players participated in the study. All participants performed an isoinertial BP test in free execution mode, a 505 change-of-direction ability test, linear sprint test (20 m), and repeated-sprint ability test. Results: A nearly perfect and inverse relationship was observed for the BP exercise between the %1RM and MPV (r = −.97, R2 = .945, P < .001). The maximum loads for MP, MPP, and PP were obtained between 48.1% and 59.4% of the 1RM. However, no significant correlations were observed between strength and wheelchair performance. Conclusions: Wheelchair basketball players with different functional impairments showed a nearly perfect and inverse relationship for the BP exercise between the %1RM and MPV; thus the MPV could be used to estimate the %1RM. This finding has important practical applications for velocity-based resistance training in that coaches would be able to prescribe and monitor training load. Conversely, the absence of association between BP performance and field tests might be due to other factors such as the wheelchair–user interface, trunk-muscle activity, or propulsion technique, apart from strength variables.

Iturricastillo, Granados, Romarate, and Yanci are with the Faculty of Education and Sport, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain. Reina and Sarabia are with Sports Research Center, Miguel Hernández University, Elche, Spain.

Iturricastillo (aitor.iturricastillo@ehu.eus) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    De Groot SBalvers IJKouwenhoven SMJanssen TW. Validity and reliability of tests determining performance-related components of wheelchair basketball. J Sports Sci. 2012;30(9):879887. PubMed ID: 22489567 doi:10.1080/02640414.2012.675082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Granados CYanci JBadiola Aet al. Anthropometry and performance in wheelchair basketball. J Strength Cond Res. 2015;29(7):18121820. PubMed ID: 25536537 doi:10.1519/JSC.0000000000000817

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Vanlandewijck YCDaly DJTheisen DM. Field test evaluation of aerobic, anaerobic, and wheelchair basketball skill performances. Int J Sports Med. 1999;20(8):548554. PubMed ID: 10606220 doi:10.1055/s-1999-9465

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cavedon VZancanaro CMilanese C. Physique and performance of young wheelchair basketball players in relation with classification. PLoS ONE. 2015;10(11):e0143621. PubMed ID: 26606681 doi:10.1371/journal.pone.0143621

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Paulson TGoosey-Tolfrey V. Current perspectives on profiling and enhancing wheelchair court sport performance. Int J Sports Physiol Perform. 2017;12(3):275286. PubMed ID: 27448391 doi:10.1123/ijspp.2016-0231

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Gil SMYanci JOtero Met al. The functional classification and field test performance in wheelchair basketball players. J Hum Kinet. 2016;46:219230. doi:10.1515/hukin-2015-0050

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Akinoglu BKocahan T. Characteristics of upper extremity’s muscle strength in Turkish national wheelchair basketball players team. J Exerc Rehabil. 2017;13(1):6267. PubMed ID: 28349035 doi:10.12965/jer.1732868.434

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tørhaug TBrurok BHoff JHelgerud JLeivseth G. The effect from maximal bench press strength training on work economy during wheelchair propulsion in men with spinal cord injury. Spinal Cord. 2016;54(10):838842. doi:10.1038/sc.2016.27

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Turbanski SSchmidtbleicher D. Effects of heavy resistance training on strength and power in upper extremities in wheelchair athletes. J Strength Cond Res. 2010;24(1):816. PubMed ID: 19996772 doi:10.1519/JSC.0b013e3181bdddda

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Mason BSVan Der Woude LHVGoosey-Tolfrey VL. The ergonomics of wheelchair configuration for optimal performance in the wheelchair court sports. Sports Med. 2013;43(1):2338. PubMed ID: 23315754 doi:10.1007/s40279-012-0005-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Drinkwater EJLawton TWMcKenna MJLindsell RPHunt PHPyne DB. Increased number of forced repetitions does not enhance strength development with resistance training. J Strength Cond Res. 2007;21(3):841847. PubMed ID: 17685709 doi:10.1519/R-20666.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gonzalo-Skok OTous-Fajardo JArjol-Serrano JLMendez-Villanueva A. Determinants, reliability, and usefulness of a bench press repeated power ability test in young basketball players. J Strength Cond Res. 2014;28(1):126133. PubMed ID: 23669817 doi:10.1519/JSC.0b013e3182986c1f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Loturco IPereira LAWinckler CSantos WLKobal RMcGuigan M. Load–velocity relationship in national Paralympic powerlifters: a case study. Int J Sports Physiol Perform. 2019;14(4):531535. doi:10.1123/ijspp.2018-0452

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    González-Badillo JJSánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med. 2010;31:347352. doi:10.1055/s-0030-1248333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    González-Badillo JJRodríguez-Rosell DSánchez-Medina LGorostiaga EMPareja-Blanco F. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur J Sport Sci. 2014;14(8):772781. doi:10.1080/17461391.2014.905987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Sánchez-Medina LGonzález-Badillo JJPérez CEPallarés JG. Velocity- and power-load relationships of the bench pull vs bench press exercises. Int J Sports Med. 2014;35(3):209216. doi:10.1055/s-0033-1351252

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gonzalo-Skok OTous-Fajardo JArjol-Serrano JLSuarez-Arrones LCasajús JAMendez-Villanueva A. Improvement of repeated-sprint ability and horizontal-jumping performance in elite young basketball players with low-volume repeated-maximal-power training. Int J Sports Physiol Perform. 2016;11(4):464473. PubMed ID: 26356548 doi:10.1123/ijspp.2014-0612

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Meckel YGottlieb REliakim A. Repeated sprint tests in young basketball players at different game stages. Eur J Appl Physiol. 2009;107:273279. PubMed ID: 19572143 doi:10.1007/s00421-009-1120-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Spiteri TNimphius SHart NHSpecos CSheppard JMNewton RU. Contribution of strength characteristics to change of direction and agility performance in female basketball athletes. J Strength Cond Res. 2014;28(9):24152423. PubMed ID: 24875426 doi:10.1519/JSC.0000000000000547

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Molik BLaskin JJKosmol ASkucas KBida U. Relationships between anaerobic performance, field tests, and functional level of elite female wheelchair basketball athletes. Hum Movement. 2013;14(4):366371. doi:10.2478/humo-2013-0045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Veeger TTJde Witte AMHBerger MAMvan der Slikke RMAVeeger DHEJHoozemans MJM. Improving mobility performance in wheelchair basketball. J Sport Rehabil. 2018;26:18. doi:10.1123/jsr.2017-0142

    • Search Google Scholar
    • Export Citation
  • 22.

    Harris DJAtkinson G. Ethical standards in sport and exercise science research: 2016 update. Int J Sports Med. 2015;34:10251028. doi:10.1055/s-0035-1565186

    • Search Google Scholar
    • Export Citation
  • 23.

    Sánchez-Medina LPérez CEGonzález-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31(2):123129. doi:10.1055/s-0029-1242815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Sheppard JMYoung WBDoyle TLASheppard TANewton RU. An evaluation of a new test of reactive agility and its relationship to sprint speed and change of direction speed. J Sci Med Sport. 2006;9:342349. PubMed ID: 16844413 doi:10.1016/j.jsams.2006.05.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Spencer MBishop DDawson BGoodman C. Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med. 2005;35:10251044. PubMed ID: 16336007 doi:10.2165/00007256-200535120-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Pyne DSaunders PMontgomery PHewitt ASheehan K. Relationships between repeated sprint testing, speed, and endurance. J Strength Cond Res. 2008;22:16331637. PubMed ID: 18714221 doi:10.1519/JSC.0b013e318181fe7a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Atkinson GNevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217238. PubMed ID: 9820922 doi:10.2165/00007256-199826040-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    García-Ramos APestaña-Melero FLPérez-Castilla ARojas FJHaff GG. Mean velocity vs mean propulsive velocity vs peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res. 2018;32(5):12731279. doi:10.1519/JSC.0000000000001998

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Conceição FFernandes JLewis MGonzaléz-Badillo JJJimenéz-Reyes P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci. 2016;34(12):10991106. doi:10.1080/02640414.2015.1090010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Loturco IPereira LACal Abad CCet al. Using bar velocity to predict the maximum dynamic strength in the half-squat exercise. Int J Sports Physiol Perform. 2016;11(5):697700. PubMed ID: 26457921 doi:10.1123/ijspp.2015-0316

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Loturco IKobal RMoraes Jet al. Predicting the maximum dynamic strength in bench press: the high precision of the bar velocity approach. J Strength Cond Res. 2017;31(4):11271131. PubMed ID: 28328719 doi:10.1519/JSC.0000000000001670

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    da Silva BVSimim MAMarocolo MFranchini Eda Mota GR. Optimal load for the peak power and maximal strength of the upper body in Brazilian Jiu-Jitsu athletes. J Strength Cond Res. 2015;29(6):16161621. PubMed ID: 25486298 doi:10.1519/JSC.0000000000000799

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Sassi RHDardouri WYahmed MHGmada NMahfoudhi MEGharbi Z. Relative and absolute reliability of a modified agility T-test and its relationship with vertical jump and straight sprint. J Strength Cond Res. 2009;23(6):16441651. doi:10.1519/JSC.0b013e3181b425d2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Beckman EMConnick MJTweedy SM. Assessing muscle strength for the purpose of classification in Paralympic sport: a review and recommendations. J Sci Med Sport. 2017;20(4):391396. PubMed ID: 27692576 doi:10.1016/j.jsams.2016.08.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Vanlandewijck YCVerellen JTweedy S. Towards evidence-based classification in wheelchair sports: impact of seating position on wheelchair acceleration. J Sports Sci. 2011;29(10):10891096. PubMed ID: 21756128 doi:10.1080/02640414.2011.576694

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 76 76 67
Full Text Views 8 8 8
PDF Downloads 5 5 5
Altmetric Badge
PubMed
Google Scholar