Impact of Hyperoxic Preconditioning in Normobaric Hypoxia (3500 m) on Balance Ability in Highly Skilled Skiers: A Randomized, Crossover Study

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

It is well known that acute hypoxia has negative effects on balance performance. An attempt to compensate for the influence of hypoxia on competition performance was made by the application of hyperoxic gases (inspiratory fraction of oxygen > 0.2095) prior to exercise. Purpose: To investigate whether hyperoxic preconditioning (pure-oxygen supplementation prior to exercise) improves balance ability and postural stability during normobaric hypoxia (3500 m) in highly skilled skiers. Methods: In this single-blind randomized, crossover study, 19 subjects performed a 60-s balance test (MFT S3-Check) in a normobaric hypoxic chamber. After a short period of adaptation to hypoxia (60 min), they received either pure oxygen or chamber air for 5 min prior to a balance test (hyperoxic preconditioning vs nonhyperoxic preconditioning). Capillary blood was collected 3 times. Results: Balance performance, indexed by sensory (P = .097), stability (P = .937), and symmetry (P = .202) scores, was not significantly different after the hyperoxic preconditioning phase. Balance performance decreased over time (no group difference). After hyperoxic preconditioning, arterial partial pressure of oxygen increased from 52.7 (4.5) mm Hg to 212.5 (75.8) mm Hg, and oxygen saturation of hemoglobin increased from 85.8% (3.5%) to 98.9% (0.7%) and remained significantly elevated to 90.1% (2.0%) after the balance test. Conclusion: A hyperoxic preconditioning phase does not affect balance performance under hypoxic environmental conditions. A performance-enhancing effect, at least in terms of coordinative functions, was not supported by this study.

Morawetz, Dünnwald, and Schobersberger are with the Inst for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), University for Health Sciences, Medical Informatics and Technology (UMIT), Hall in Tirol, Austria, and Tirol Kliniken GmbH, Innsbruck, Austria. Faulhaber is with the Dept of Sport Science, University of Innsbruck, Innsbruck, Austria. Gatterer is with the Inst of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy.

Morawetz (david.morawetz@umit.at) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Müller ESchwameder H. Biomechanical aspects of new techniques in alpine skiing and ski-jumping. J Sports Sci. 2003;21(9):679692. doi:10.1080/0264041031000140284

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Raschner CHildebrandt CMohr JMüller L. Sex differences in balance among alpine ski racers: cross-sectional age comparisons. Percept Mot Skills. 2017;124(6):11341150. PubMed ID: 28901201 doi:10.1177/0031512517730730

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Raschner CLembert SPlatzer HPPatterson CHilden TLutz M. S3-Check: evaluierung und normwerteerhebung eines tests zur erfassung der gleichgewichtsfähigkeit und körperstabilität. Sportverletzung Sportschaden. 2008;22(02):100105. doi:10.1055/s-2008-1027239

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Müller LHildebrandt CMüller EFink CRaschner C. Long-term athletic development in youth alpine ski racing: the effect of physical fitness, ski racing technique, anthropometrics and biological maturity status on injuries. Front Physiol. 2017;8:656. PubMed ID: 28912731 doi:10.3389/fphys.2017.00656

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Degache FLarghi GFaiss RDeriaz OMillet G. Hypobaric versus normobaric hypoxia: same effects on postural stability? High Alt Med Biol. 2012;13(1):4045. PubMed ID: 22429231 doi:10.1089/ham.2011.1042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    López-Barneo JGonzález-Rodríguez PGao LFernández-Agüera MCPardal ROrtega-Sáenz P. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol. 2016;310(8):C629C642. doi:10.1152/ajpcell.00265.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Nussbaumer-Ochsner YUrsprung JSiebenmann CMaggiorini MBloch KE. Effect of short-term acclimatization to high altitude on sleep and nocturnal breathing. Sleep. 2012;35(3):419423. PubMed ID: 22379248 doi:10.5665/sleep.1708

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Khodaee MGrothe HLSeyfert JHVanBaak K. Athletes at high altitude. Sports Health. 2016;8(2):126132. PubMed ID: 26863894 doi:10.1177/1941738116630948

  • 9.

    Whayne TF Jr. Cardiovascular medicine at high altitude. Angiology. 2014;65(6):459472. PubMed ID: 23892441 doi:10.1177/0003319713497086

  • 10.

    Hoiland RLHowe CACoombs GBAinslie PN. Ventilatory and cerebrovascular regulation and integration at high-altitude. Clin Auton Res. 2018;28(4):423435. doi:10.1007/s10286-018-0522-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Komiyama TKatayama KSudo MIshida KHigaki YAndo S. Cognitive function during exercise under severe hypoxia. Sci Rep. 2017;7(1):10000. PubMed ID: 28855602 doi:10.1038/s41598-017-10332-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Johnson BGSimmons JWright ADet al. Ataxia at altitude measured on a wobble board. Wilderness Environ Med. 2005;16(1):4246. PubMed ID: 15813147 doi:10.1580/1080-6032(2005)16[42:AAAMOA]2.0.CO;2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Wilson MHNewman SImray CH. The cerebral effects of ascent to high altitudes. Lancet Neurol. 2009;8(2):175191. PubMed ID: 19161909 doi:10.1016/S1474-4422(09)70014-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    FIS RTP Letter. 2016. http://www.fis-ski.com/inside-fis/medical-antidoping/anti-doping/. Accessed June 15 2018.

    • Export Citation
  • 15.

    IOC-Policy Regarding Certain NOC Scientific and Medical Equipment Rio. 2016. https://www.olympic.org/fight-against-doping. Accessed June 15 2018.

    • Export Citation
  • 16.

    WADA Prohibited List. 2017. https://www.wada-ama.org/en/prohibited-list. Accessed November 20 2017.

    • Export Citation
  • 17.

    Sperlich BCalbet JABoushel RHolmberg HC. Is the use of hyperoxia in sports effective, safe and ethical? Scand J Med Sci Sports. 2016;26(11):12681272. PubMed ID: 27539548 doi:10.1111/sms.12746

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Linossier MTDormois DArsac Let al. Effect of hyperoxia on aerobic and anaerobic performances and muscle metabolism during maximal cycling exercise. Acta Physiol Scand. 2000;168(3):403411. PubMed ID: 10712578 doi:10.1046/j.1365-201x.2000.00648.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ohya TYamanaka ROhnuma HHagiwara MSuzuki Y. Hyperoxia extends time to exhaustion during high-intensity intermittent exercise: a randomized, crossover study in male cyclists. Sports Med Open. 2016;2(1):34. PubMed ID: 27747789 doi:10.1186/s40798-016-0059-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Peltonen JERantamäki JNiittymäki SPTSweins KVitasalo JTRusko HK. Effects of oxygen fraction in inspired air on rowing performance. Med Sci Sports Exerc. 1995;27(4):573579. PubMed ID: 7791589 doi:10.1249/00005768-199504000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Plet JPedersen PKJensen FBHansen JK. Increased working capacity with hyperoxia in humans. Eur J Appl Physiol Occup Physiol. 1992;65(2):171177. PubMed ID: 1396641 doi:10.1007/BF00705076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Prieur FBenoit HBusso TCastells JGeyssant ADenis C. Effects of moderate hyperoxia on oxygen consumption during submaximal and maximal exercise. Eur J Appl Physiol. 2002;88(3):235242. PubMed ID: 12458366 doi:10.1007/s00421-002-0707-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Tucker RKayser BRae ERauch LBosch ANoakes T. Hyperoxia improves 20 km cycling time trial performance by increasing muscle activation levels while perceived exertion stays the same. Eur J Appl Physiol. 2007;101(6):771781. PubMed ID: 17909845 doi:10.1007/s00421-007-0458-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Brugniaux JVCoombs GBBarak OFDujic ZSekhon MSAinslie PN. Highs and lows of hyperoxia: physiological, performance, and clinical aspects. Am J Physiol Regul Integr Comp Physiol. 2018;315(1):R1R27. PubMed ID: 29488785 doi:10.1152/ajpregu.00165.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Oussaidene KPrieur FBougault VBorel BMatran RMucci P. Cerebral oxygenation during hyperoxia-induced increase in exercise tolerance for untrained men. Eur J Appl Physiol. 2013;113(8):20472056. PubMed ID: 23579360 doi:10.1007/s00421-013-2637-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Sperlich BZinner CHauser AHolmberg HCWegrzyk J. The impact of hyperoxia on human performance and recovery. Sports Med. 2017;47(3):429438. PubMed ID: 27475952 doi:10.1007/s40279-016-0590-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hauser AZinner CBorn DPWehrlin JPSperlich B. Does hyperoxic recovery during cross-country skiing team sprints enhance performance? Med Sci Sports Exerc. 2014;46(4):787794. PubMed ID: 24042304 doi:10.1249/MSS.0000000000000157

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Sperlich BSchiffer TAchtzehn SMester JHolmberg HC. Pre-exposure to hyperoxic air does not enhance power output during subsequent sprint cycling. Eur J Appl Physiol. 2010;110(2):301305. PubMed ID: 20473681 doi:10.1007/s00421-010-1507-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Sperlich BZinner CKrueger MWegrzyk JAchtzehn SHolmberg HC. Effects of hyperoxia during recovery from 5 × 30-s bouts of maximal-intensity exercise. J Sports Sci. 2012;30(9):851858. PubMed ID: 22468755 doi:10.1080/02640414.2012.671531

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Watson NBeards SAltaf NKassner AJackson A. The effect of hyperoxia on cerebral blood flow: a study in healthy volunteers using magnetic resonance phase-contrast angiography. Eur J Anaesthesiol. 2000;17(3):152159. PubMed ID: 10758463 doi:10.1097/00003643-200003000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 27 27 20
Full Text Views 7 7 5
PDF Downloads 5 5 3
Altmetric Badge
PubMed
Google Scholar