The Potential to Change Pacing and Performance During 4000-m Cycling Time Trials Using Hyperoxia and Inspired Gas-Content Deception

Click name to view affiliation

Michael J. Davies
Search for other papers by Michael J. Davies in
Current site
Google Scholar
PubMed
Close
,
Bradley Clark
Search for other papers by Bradley Clark in
Current site
Google Scholar
PubMed
Close
,
Laura A. Garvican-Lewis
Search for other papers by Laura A. Garvican-Lewis in
Current site
Google Scholar
PubMed
Close
,
Marijke Welvaert
Search for other papers by Marijke Welvaert in
Current site
Google Scholar
PubMed
Close
,
Christopher J. Gore
Search for other papers by Christopher J. Gore in
Current site
Google Scholar
PubMed
Close
, and
Kevin G. Thompson
Search for other papers by Kevin G. Thompson in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To determine if a series of trials with fraction of inspired oxygen (FiO2) content deception could improve 4000-m cycling time-trial (TT) performance. Methods: A total of 15 trained male cyclists (mean [SD] body mass 74.2 [8.0] kg, peak oxygen uptake 62 [6] mL·kg−1·min−1) completed six 4000-m cycling TTs in a semirandomized order. After a familiarization TT, cyclists were informed in 2 initial trials they were inspiring normoxic air (NORM, FiO2 0.21); however, in 1 trial (deception condition), they inspired hyperoxic air (NORM-DEC, FiO2 0.36). During 2 subsequent TTs, cyclists were informed they were inspiring hyperoxic air (HYPER, FiO2 0.36), but in 1 trial, normoxic air was inspired (HYPER-DEC). In the final TT (NORM-INFORM), the deception was revealed and cyclists were asked to reproduce their best TT performance while inspiring normoxic air. Results: Greater power output and faster performances occurred when cyclists inspired hyperoxic air in both truthful (HYPER) and deceptive (NORM-DEC) trials than NORM (P < .001). However, performance only improved in NORM-INFORM (377 W; 95% confidence interval [CI] 325–429) vs NORM (352 W; 95% CI 299–404; P < .001) when participants (n = 4) completed the trials in the following order: NORM-DEC, NORM, HYPER-DEC, HYPER. Conclusions: Cycling performance improved with acute exposure to hyperoxia. Mechanisms for the improvement were likely physiological; however, improvement in a deception trial suggests an additional placebo effect. Finally, a particular sequence of oxygen deception trials may have built psychophysiological belief in cyclists such that performance improved in a subsequent normoxic trial.

Davies, Clark, Garvican-Lewis, Welvaert, and Thompson are with the Research Inst for Sport and Exercise, University of Canberra, Bruce, ACT, Australia. Davies, Garvican-Lewis, Welvaert, and Gore are with the Dept of Physiology, Australian Inst of Sport, Bruce, ACT, Australia. Garvican-Lewis is also with the Mary MacKillop Inst for Health Research, Australian Catholic University, Melbourne, VIC, Australia. Thompson is also with the New South Wales Inst of Sport, Sydney Olympic Park, Sydney, NSW, Australia.

Clark (brad.clark@canberra.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia. 1996;52(5):416420. PubMed ID: 8641377 doi:10.1007/BF01919309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gibson ASC, Noakes T. Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br J Sports Med. 2004;38(6):797806. doi:10.1136/bjsm.2003.009852

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Williams EL, Jones HS, Sparks S, Marchant DC, Micklewright D, McNaughton LR. Deception studies manipulating centrally acting performance modifiers: a review. Med Sci Sports Exerc. 2014;46(7):14411451. PubMed ID: 24300123 doi:10.1249/MSS.0000000000000235

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Micklewright D, Parry D, Robinson T, et al. Risk perception influences athletic pacing strategy. Med Sci Sports Exerc. 2015;47(5):10261037. PubMed ID: 25202846 doi:10.1249/MSS.0000000000000500

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Davies MJ, Clark B, Welvaert M, et al. Effect of environmental and feedback interventions on pacing profiles in cycling: a meta-analysis. Front Physiol. 2016;7:591. PubMed ID: 27994554 doi:10.3389/fphys.2016.00591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Shei RJ, Thompson K, Chapman R, Raglin J, Mickleborough T. Using deception to establish a reproducible improvement in 4-km cycling time trial performance. Int J Sports Med. 2016;37(5):341346. PubMed ID: 26855435 doi:10.1055/s-0035-1565139

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Jones HS, Williams EL, Marchant DC, et al. Deception has no acute or residual effect on cycling time trial performance but negatively effects perceptual responses. J Sci Med Sport. 2016;19:771776. PubMed ID: 26726003 doi:10.1016/j.jsams.2015.12.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Stone M, Thomas K, Wilkinson M, Jones A, St Clair Gibson A, Thompson K. Effects of deception on exercise performance: implications for determinants of fatigue in humans. Med Sci Sports Exerc. 2012;44(3):534541. PubMed ID: 21886012 doi:10.1249/MSS.0b013e318232cf77

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Castle PC, Maxwell N, Allchorn A, Mauger AR, White DK. Deception of ambient and body core temperature improves self paced cycling in hot, humid conditions. Eur J Appl Physiol. 2012;112(1):377385. PubMed ID: 21573777 doi:10.1007/s00421-011-1988-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Johnson BD, Joseph T, Wright G, et al. Rapidity of responding to a hypoxic challenge during exercise. Eur J Appl Physiol. 2009;106(4):493499. PubMed ID: 19326141 doi:10.1007/s00421-009-1036-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Henslin KB, Foster C, de Koning JJ, Dodge C, Wright GA, Porcari JP. Rapidity of response to hypoxic conditions during exercise. Int J Sports Physiol Perform. 2013;8:330335. doi:10.1123/ijspp.8.3.330

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Tucker R, Kayser B, Rae E, Rauch L, Bosch A, Noakes T. Hyperoxia improves 20 km cycling time trial performance by increasing muscle activation levels while perceived exertion stays the same. Eur J Appl Physiol. 2007;101(6):771781. PubMed ID: 17909845 doi:10.1007/s00421-007-0458-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Linossier M, Dormois D, Arsac L, et al. Effect of hyperoxia on aerobic and anaerobic performances and muscle metabolism during maximal cycling exercise. Acta Physiol Scand. 2000;168(3):403411. PubMed ID: 10712578 doi:10.1046/j.1365-201x.2000.00648.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Peltonen JE, Tikkanen HO, Ritola JJ, Ahotupa M, Rusko HK. Oxygen uptake response during maximal cycling in hyperoxia, normoxia and hypoxia. Aviat Space Environ Med. 2001;72(10):904911. PubMed ID: 11601554

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Appl Physiol. 2006;575(3):937952.

    • Search Google Scholar
    • Export Citation
  • 16.

    Metcalfe AJ, Menaspà P, Villerius V, et al. Within-season distribution of external training and racing workload in professional male road cyclists. Int J Sports Physiol Perform. 2017;12(2):142151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Saunders PU, Garvican-Lewis LA, Schmidt WF, Gore CJ. Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure. Br J Sports Med. 2013;47(1):i26i30. doi:10.1136/bjsports-2013-092841

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kuipers H, Verstappen F, Keizer H, Geurten P, Van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med. 1985;6(4):197201. PubMed ID: 4044103 doi:10.1055/s-2008-1025839

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Martin A. Efficacy of 11-minute warm-up cycling routine. Paper presented at: Applied Physiology Conference; 2014; Canberra, ACT.

  • 20.

    Wu SSX, Peiffer JJ, Brisswalter J, Lau WY, Nosaka K, Abbiss CR. Influence of age and sex on pacing during Sprint, Olympic, Half-Ironman and Ironman triathlons: part B. J Sci Cycl. 2014;3(1):4955.

    • Search Google Scholar
    • Export Citation
  • 21.

    Halperin I, Pyne DB, Martin DT. Threats to internal validity in exercise science: a review of overlooked confounding variables. Int J Sports Physiol Perform. 2015;10(7):823829. doi:10.1123/ijspp.2014-0566

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Tucker R, Rauch L, Harley YXR, Noakes TD. Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflugers Arch. 2004;448(4):422430. doi:10.1007/s00424-004-1267-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Clancy E, Morin EL, Merletti R. Sampling, noise-reduction and amplitude estimation issues in surface electromyography. J Electromyogr Kinesiol. 2002;12(1):116. doi:10.1016/S1050-6411(01)00033-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Matthews G, Joyner L, Gilliland K, Campbell S, Falconer S, Huggins J. Validation of a comprehensive stress state questionnaire: towards a state big three. Personal Psychol Eur. 1999;7:335350.

    • Search Google Scholar
    • Export Citation
  • 25.

    Jones MV, Lane AM, Bray SR, Uphill M, Catlin J. Development and validation of the Sport Emotion Questionnaire. J Sport Exerc Psychol. 2005;27:407431. doi:10.1123/jsep.27.4.407

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;61(1):148.

  • 27.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2017. https://www.R-project.org/. Accessed October 18, 2017.

    • Search Google Scholar
    • Export Citation
  • 28.

    Fox J, Weisberg S. An R Companion to Applied Regression. Thousand Oaks, CA: Sage; 2011.

  • 29.

    Stone MR, Thomas K, Wilkinson M, Gibson ASC, Thompson KG. Consistency of perceptual and metabolic responses to a laboratory-based simulated 4,000-m cycling time trial. Eur J Appl Physiol. 2011;111(8):18071813. PubMed ID: 21222130 doi:10.1007/s00421-010-1818-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Clark SA, Bourdon P, Schmidt W, et al. The effect of acute simulated moderate altitude on power, performance and pacing strategies in well-trained cyclists. Eur J Appl Physiol. 2007;102(1):4555. doi:10.1007/s00421-007-0554-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2259 409 74
Full Text Views 69 37 0
PDF Downloads 43 6 0