The Potential to Change Pacing and Performance During 4000-m Cycling Time Trials Using Hyperoxia and Inspired Gas-Content Deception

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To determine if a series of trials with fraction of inspired oxygen (FiO2) content deception could improve 4000-m cycling time-trial (TT) performance. Methods: A total of 15 trained male cyclists (mean [SD] body mass 74.2 [8.0] kg, peak oxygen uptake 62 [6] mL·kg−1·min−1) completed six 4000-m cycling TTs in a semirandomized order. After a familiarization TT, cyclists were informed in 2 initial trials they were inspiring normoxic air (NORM, FiO2 0.21); however, in 1 trial (deception condition), they inspired hyperoxic air (NORM-DEC, FiO2 0.36). During 2 subsequent TTs, cyclists were informed they were inspiring hyperoxic air (HYPER, FiO2 0.36), but in 1 trial, normoxic air was inspired (HYPER-DEC). In the final TT (NORM-INFORM), the deception was revealed and cyclists were asked to reproduce their best TT performance while inspiring normoxic air. Results: Greater power output and faster performances occurred when cyclists inspired hyperoxic air in both truthful (HYPER) and deceptive (NORM-DEC) trials than NORM (P < .001). However, performance only improved in NORM-INFORM (377 W; 95% confidence interval [CI] 325–429) vs NORM (352 W; 95% CI 299–404; P < .001) when participants (n = 4) completed the trials in the following order: NORM-DEC, NORM, HYPER-DEC, HYPER. Conclusions: Cycling performance improved with acute exposure to hyperoxia. Mechanisms for the improvement were likely physiological; however, improvement in a deception trial suggests an additional placebo effect. Finally, a particular sequence of oxygen deception trials may have built psychophysiological belief in cyclists such that performance improved in a subsequent normoxic trial.

Davies, Clark, Garvican-Lewis, Welvaert, and Thompson are with the Research Inst for Sport and Exercise, University of Canberra, Bruce, ACT, Australia. Davies, Garvican-Lewis, Welvaert, and Gore are with the Dept of Physiology, Australian Inst of Sport, Bruce, ACT, Australia. Garvican-Lewis is also with the Mary MacKillop Inst for Health Research, Australian Catholic University, Melbourne, VIC, Australia. Thompson is also with the New South Wales Inst of Sport, Sydney Olympic Park, Sydney, NSW, Australia.

Clark (brad.clark@canberra.edu.au) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia. 1996;52(5):416420. PubMed ID: 8641377 doi:10.1007/BF01919309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gibson ASCNoakes T. Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br J Sports Med. 2004;38(6):797806. doi:10.1136/bjsm.2003.009852

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Williams ELJones HSSparks SMarchant DCMicklewright DMcNaughton LR. Deception studies manipulating centrally acting performance modifiers: a review. Med Sci Sports Exerc. 2014;46(7):14411451. PubMed ID: 24300123 doi:10.1249/MSS.0000000000000235

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Micklewright DParry DRobinson Tet al. Risk perception influences athletic pacing strategy. Med Sci Sports Exerc. 2015;47(5):10261037. PubMed ID: 25202846 doi:10.1249/MSS.0000000000000500

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Davies MJClark BWelvaert Met al. Effect of environmental and feedback interventions on pacing profiles in cycling: a meta-analysis. Front Physiol. 2016;7:591. PubMed ID: 27994554 doi:10.3389/fphys.2016.00591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Shei RJThompson KChapman RRaglin JMickleborough T. Using deception to establish a reproducible improvement in 4-km cycling time trial performance. Int J Sports Med. 2016;37(5):341346. PubMed ID: 26855435 doi:10.1055/s-0035-1565139

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Jones HSWilliams ELMarchant DCet al. Deception has no acute or residual effect on cycling time trial performance but negatively effects perceptual responses. J Sci Med Sport. 2016;19:771776. PubMed ID: 26726003 doi:10.1016/j.jsams.2015.12.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Stone MThomas KWilkinson MJones ASt Clair Gibson AThompson K. Effects of deception on exercise performance: implications for determinants of fatigue in humans. Med Sci Sports Exerc. 2012;44(3):534541. PubMed ID: 21886012 doi:10.1249/MSS.0b013e318232cf77

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Castle PCMaxwell NAllchorn AMauger ARWhite DK. Deception of ambient and body core temperature improves self paced cycling in hot, humid conditions. Eur J Appl Physiol. 2012;112(1):377385. PubMed ID: 21573777 doi:10.1007/s00421-011-1988-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Johnson BDJoseph TWright Get al. Rapidity of responding to a hypoxic challenge during exercise. Eur J Appl Physiol. 2009;106(4):493499. PubMed ID: 19326141 doi:10.1007/s00421-009-1036-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Henslin KBFoster Cde Koning JJDodge CWright GAPorcari JP. Rapidity of response to hypoxic conditions during exercise. Int J Sports Physiol Perform. 2013;8:330335. doi:10.1123/ijspp.8.3.330

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Tucker RKayser BRae ERauch LBosch ANoakes T. Hyperoxia improves 20 km cycling time trial performance by increasing muscle activation levels while perceived exertion stays the same. Eur J Appl Physiol. 2007;101(6):771781. PubMed ID: 17909845 doi:10.1007/s00421-007-0458-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Linossier MDormois DArsac Let al. Effect of hyperoxia on aerobic and anaerobic performances and muscle metabolism during maximal cycling exercise. Acta Physiol Scand. 2000;168(3):403411. PubMed ID: 10712578 doi:10.1046/j.1365-201x.2000.00648.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Peltonen JETikkanen HORitola JJAhotupa MRusko HK. Oxygen uptake response during maximal cycling in hyperoxia, normoxia and hypoxia. Aviat Space Environ Med. 2001;72(10):904911. PubMed ID: 11601554

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Amann MEldridge MWLovering ATStickland MKPegelow DFDempsey JA. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Appl Physiol. 2006;575(3):937952.

    • Search Google Scholar
    • Export Citation
  • 16.

    Metcalfe AJMenaspà PVillerius Vet al. Within-season distribution of external training and racing workload in professional male road cyclists. Int J Sports Physiol Perform. 2017;12(2):142151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Saunders PUGarvican-Lewis LASchmidt WFGore CJ. Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure. Br J Sports Med. 2013;47(1):i26i30. doi:10.1136/bjsports-2013-092841

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kuipers HVerstappen FKeizer HGeurten PVan Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med. 1985;6(4):197201. PubMed ID: 4044103 doi:10.1055/s-2008-1025839

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Martin A. Efficacy of 11-minute warm-up cycling routine. Paper presented at: Applied Physiology Conference; 2014; Canberra, ACT.

    • Export Citation
  • 20.

    Wu SSXPeiffer JJBrisswalter JLau WYNosaka KAbbiss CR. Influence of age and sex on pacing during Sprint, Olympic, Half-Ironman and Ironman triathlons: part B. J Sci Cycl. 2014;3(1):4955.

    • Search Google Scholar
    • Export Citation
  • 21.

    Halperin IPyne DBMartin DT. Threats to internal validity in exercise science: a review of overlooked confounding variables. Int J Sports Physiol Perform. 2015;10(7):823829. doi:10.1123/ijspp.2014-0566

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Tucker RRauch LHarley YXRNoakes TD. Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflugers Arch. 2004;448(4):422430. doi:10.1007/s00424-004-1267-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Clancy EMorin ELMerletti R. Sampling, noise-reduction and amplitude estimation issues in surface electromyography. J Electromyogr Kinesiol. 2002;12(1):116. doi:10.1016/S1050-6411(01)00033-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Matthews GJoyner LGilliland KCampbell SFalconer SHuggins J. Validation of a comprehensive stress state questionnaire: towards a state big three. Personal Psychol Eur. 1999;7:335350.

    • Search Google Scholar
    • Export Citation
  • 25.

    Jones MVLane AMBray SRUphill MCatlin J. Development and validation of the Sport Emotion Questionnaire. J Sport Exerc Psychol. 2005;27:407431. doi:10.1123/jsep.27.4.407

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Bates DMächler MBolker BWalker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;61(1):148.

  • 27.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2017. https://www.R-project.org/. Accessed October 18 2017.

    • Search Google Scholar
    • Export Citation
  • 28.

    Fox JWeisberg S. An R Companion to Applied Regression. Thousand Oaks, CA: Sage; 2011.

  • 29.

    Stone MRThomas KWilkinson MGibson ASCThompson KG. Consistency of perceptual and metabolic responses to a laboratory-based simulated 4,000-m cycling time trial. Eur J Appl Physiol. 2011;111(8):18071813. PubMed ID: 21222130 doi:10.1007/s00421-010-1818-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Clark SABourdon PSchmidt Wet al. The effect of acute simulated moderate altitude on power, performance and pacing strategies in well-trained cyclists. Eur J Appl Physiol. 2007;102(1):4555. doi:10.1007/s00421-007-0554-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 40 40 35
Full Text Views 11 11 8
PDF Downloads 11 11 7
Altmetric Badge
PubMed
Google Scholar