Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To determine if the mathematical model used for the estimation of critical force (CF) and the energy store component W′ are applicable to intermittent isometric muscle actions of the finger flexors of rock climbers, using a multisession test. As a secondary aim, the agreement of estimates of CF and W′ from a single-session test was also determined. The CF was defined as the slope coefficient, and W′ was the intercept of the linear relationship between total “isometric work” (Wlim) and time to exhaustion (Tlim). Methods: Subjects performed 3 (separated by either 20 min or >24 h) tests to failure using intermittent isometric finger-flexor contractions at 45%, 60%, and 80% of their maximum voluntary contraction. Results: Force plotted against Tlim displayed a hyperbolic relationship; correlation coefficients of the parameter estimates from the work–time CF model were consistently very high (R2 > .94). Climbers’ mean CF was 425.7 (82.8) N (41.0% [6.2%] maximum voluntary contraction) and W′ was 30,882 (11,820) N·s. Good agreement was found between the single-session and multisession protocol for CF (intraclass correlation coefficient [ICC3,1] = .900; 95% confidence interval, .616–.979), but not for W′ (ICC3,1 = .768; 95% confidence interval, .190–.949). Conclusions: The results demonstrated the sensitivity of a simple test for the determination of CF and W′, using equipment readily available in most climbing gyms. Although further work is still necessary, the test of CF described is of value for understanding exercise tolerance and to determine optimal training prescription to monitor improvements in the performance of the finger flexors.

Giles is with the Health and Social Care Research Centre, Health and Social Care, and Chidley and Taylor, the Dept of Life Sciences, College of Life and Natural Sciences, University of Derby, Derby, United Kingdom. Torr is with the School of Health Sciences, University of Salford, Manchester, United Kingdom. Torr, Hadley, and Randall are with Lattice Training, Sheffield, United Kingdom. Fryer is with the School of Sport and Exercise, University of Gloucestershire, Gloucester, United Kingdom.

Giles (drdagiles@gmail.com) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Philippe MWegst DMüller TRaschner CBurtscher M. Climbing-specific finger flexor performance and forearm muscle oxygenation in elite male and female sport climbers. Eur J Appl Physiol. 2012;112(8):28392847. PubMed ID: 22131087 doi:10.1007/s00421-011-2260-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fryer SGiles DPalomino IGde la O Puerta ARomero VE. Hemodynamic and cardiorespiratory predictors of sport rock climbing performance. J Strength Cond Res. 2018;32(12):35343541. PubMed ID: 28301444 doi:10.1519/JSC.0000000000001860

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Fryer SStone KJSveen Jet al. Differences in forearm strength, endurance, and hemodynamic kinetics between male boulderers and lead rock climbers. Eur J Sport Sci. 2017;17(9):11771183. PubMed ID: 28753391 doi:10.1080/17461391.2017.1353135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Giles DRomero VEGarrido Ide la O Puerta AStone KFryer S. Differences in oxygenation kinetics between the dominant and nondominant flexor digitorum profundus in rock climbers. Int J Sport Physiol. 2017;12(1):137139.

    • Search Google Scholar
    • Export Citation
  • 5.

    Baláš JMrskoč JPanáčková MDraper N. Sport-specific finger flexor strength assessment using electronic scales in sport climbers. Sports Tech. 2014;7(3–4):151158. doi:10.1080/19346182.2015.1012082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Poole DCBurnley MVanhatalo ARossiter HBJones AM. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc. 2016;48(11):23202334. doi:10.1249/MSS.0000000000000939

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Jones AMWilkerson DPDiMenna FFulford JPoole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):R585R593.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hendrix CRHoush TJJohnson GOet al. A comparison of critical force and electromyographic fatigue threshold for isometric muscle actions of the forearm flexors. Eur J Appl Physiol. 2009;105(3):333342. PubMed ID: 19137323 doi:10.1007/s00421-008-0895-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Monod HScherrer J. The work capacity of a synergic muscular group. Ergonomics. 1965;8(3):329338.

  • 10.

    Kellawan JMTschakovsky ME. The single-bout forearm critical force test: a new method to establish forearm aerobic metabolic exercise intensity and capacity. PLoS ONE. 2014;9(4):e93481. PubMed ID: 24699366 doi:10.1371/journal.pone.0093481

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Fryer SMStoner LDickson TGet al. Oxygen recovery kinetics in the forearm flexors of multiple ability groups of rock climbers. J Strength Cond Res. 2015;29(6):16331639. PubMed ID: 25536538 doi:10.1519/JSC.0000000000000804

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Watts PBJensen RLGannon EKobeinia RMaynard JSansom J. Forearm EMG during rock climbing differs from EMG during handgrip dynamometry. J Exerc Sci. 2008;1(1):2.

    • Search Google Scholar
    • Export Citation
  • 13.

    Baláš JPanáčková MKodejška JCochrane JDMartin JA. The role of arm position during finger flexor strength measurement in sport climbers. Int J Perf Anal Sport. 2014;14(2):345354.

    • Search Google Scholar
    • Export Citation
  • 14.

    Draper NGiles DSchöffl Vet al. Comparative grading scales, statistical analyses, climber descriptors and ability grouping: International Rock Climbing Research Association Position Statement. Sports Tech. 2015;8(3–4):8894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    MacLeod DSutherland DBuntin Let al. Physiological determinants of climbing-specific finger endurance and sport rock climbing performance. J Sports Sci. 2007;25(12):14331443. doi:10.1080/02640410600944550

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Baláš JMichailov MGiles DKodejška JPanáčková MFryer S. Active recovery of the finger flexors enhances intermittent handgrip performance in rock climbers. Eur J Sport Sci. 2016;16(7):764772. doi:10.1080/17461391.2015.1119198

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231240. PubMed ID: 15705040 doi:10.1519/15184.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Karsten BJobson SHopker JJimenez ABeedie C. High agreement between laboratory and field estimates of critical power in cycling. Int J Sports Med. 2013;35(4):298303. PubMed ID: 24022574 doi:10.1055/s-0033-1349844

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Bartram JCThewlis DMartin DTNorton KI. Predicting critical power in elite cyclists: questioning the validity of the 3-minute all-out test. Int J Sports Physiol. 2017;12(6):783787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Skiba PFJackman SClarke DVanhatalo AJones AM. Effect of work and recovery durations on W′ reconstitution during intermittent exercise. Med Sci Sports Exerc. 2014;46(7):14331440. doi:10.1249/MSS.0000000000000226

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Morton RHBillat LV. The critical power model for intermittent exercise. Eur J Appl Physiol. 2004;91(2–3):303307. PubMed ID: 14586587 doi:10.1007/s00421-003-0987-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kent-Braun JANg AVDoyle JWTowse TF. Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise. J Appl Physiol. 2002;93(5):18131823. PubMed ID: 12381770 doi:10.1152/japplphysiol.00091.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Simpson LPJones AMVanhatalo AWilkerson DP. Influence of initial metabolic rate on the power–duration relationship for all-out exercise. Eur J Appl Physiol. 2012;112(7):24672473. doi:10.1007/s00421-011-2214-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Burnley MDavison GBaker JR. Effects of priming exercise on VO2 kinetics and the power-duration relationship. Med Sci Sports Exerc. 2011;43(11):21712179.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ferguson CRossiter HBWhipp BJCathcart AJMurgatroyd SRWard SA. Effect of recovery duration from prior exhaustive exercise on the parameters of the power-duration relationship. J Appl Physiol. 2010;108(4):866874. PubMed ID: 20093659 doi:10.1152/japplphysiol.91425.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Burnley MDoust JHVanhatalo A. A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc. 2006;38(11):19952003.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Vanhatalo AJones AM. Influence of prior sprint exercise on the parameters of the ‘all‐out critical power test’ in men. Exp Physiol. 2009;94(2):255263.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Skiba PFChidnok WVanhatalo AJones AM. Modeling the expenditure and reconstitution of work capacity above critical power. Med Sci Sports Exerc. 2012;44(8):15261532. doi:10.1249/MSS.0b013e3182517a80

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fanchini MViolette FImpellizzeri FMMaffiuletti NA. Differences in climbing-specific strength between boulder and lead rock climbers. J Strength Cond Res. 2013;27(2):310314. PubMed ID: 22505133 doi:10.1519/JSC.0b013e3182577026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Jones AMVanhatalo A. The ‘critical power’ concept: applications to sports performance with a focus on intermittent high-intensity exercise. Sports Med. 2017;47(1):6578.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 33 33 26
Full Text Views 7 7 5
PDF Downloads 5 5 4
Altmetric Badge
PubMed
Google Scholar