The Effect of Self-Paced and Prescribed Interset Rest Strategies on Performance in Strength Training

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To assess pacing strategies using prescribed and self-selected interset rest periods and their influence on performance in strength-trained athletes. Methods: A total of 16 strength-trained male athletes completed 3 randomized heavy strength-training sessions (5 sets and 5 repetitions) with different interset rest periods. The interset rest periods were 3 min (3MIN), 5 min (5MIN), and self-selected (SS). Mechanical (power, velocity, work, and displacement), surface electromyography (sEMG), and subjective (rating of perceived exertion) and readiness-to-lift data were recorded for each set. Results: SS-condition interset rest periods increased from sets 1 to 4 (from 207.52 to 277.71 s; P = .01). No differences in mechanical performance were shown between the different interset rest-period conditions. Power output (210 W; 8.03%) and velocity (0.03 m·s−1; 6.73%) decreased as sets progressed for all conditions (P < .001) from set 1 to set 5. No differences in sEMG activity between conditions were shown; however, vastus medialis sEMG decreased as the sets progressed for each condition (1.75%; P = .005). All conditions showed increases in rating of perceived exertion as sets progressed (set 1 = 6.1, set 5 = 7.9; P < .001). Participants reported greater readiness to lift in the 5MIN condition (7.81) than in the 3MIN (7.09) and SS (7.20) conditions (P < .001). Conclusions: Self-selecting interset rest periods does not significantly change performance compared with 3MIN and 5MIN conditions. Given the opportunity, athletes will vary their interset rest periods to complete multiple sets of heavy strength training. Self-selection of interset rest periods may be a feasible alternative to prescribed interset rest periods.

The authors are with the Faculty of Health, Research Inst for Sport and Exercise, University of Canberra, Bruce, Canberra, ACT, Australia. Thompson is also with the New South Wales Inst of Sport, Sydney Olympic Park, Sydney, NSW, Australia.

Ball (nick.ball@canberra.edu.au) is corresponding author.
International Journal of Sports Physiology and Performance

Article Sections

References

  • 1.

    Foster CSchrager MSnyder ACThompson NN. Pacing strategy and athletic performance. Sports Med. 1994;17(2):7785. PubMed ID: 8171225 doi:10.2165/00007256-199417020-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Abbiss CRLaursen PB. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008;38(3):239252. PubMed ID: 18278984 doi:10.2165/00007256-200838030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Thompson K. Pacing: Individual Strategies for Optimal Performance. Champaign, IL: Human Kinetics; 2014.

  • 4.

    Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Cell Mol Life Sci. 1996;52(5):416420. doi:10.1007/BF01919309

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Noakes TD. Time to move beyond a brainless exercise physiology: the evidence for complex regulation of human exercise performance. Appl Physiol Nutr Metab. 2011;36(1):2335. PubMed ID: 21326375 doi:10.1139/H10-082

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Tucker R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med. 2009;43(6):392400. PubMed ID: 19224911 doi:10.1136/bjsm.2008.050799

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Marcora S. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol. 2009;106(6):20602062. PubMed ID: 18483166 doi:10.1152/japplphysiol.90378.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Edwards AMPolman RC. Pacing and awareness: brain regulation of physical activity. Sports Med. 2013;43(11):10571064. PubMed ID: 23990402 doi:10.1007/s40279-013-0091-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Renfree AMartin LMicklewright DSt Clair Gibson A. Application of decision-making theory to the regulation of muscular work rate during self-paced competitive endurance activity. Sports Med. 2014;44(2):147158. PubMed ID: 24113898 doi:10.1007/s40279-013-0107-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Shimano TKraemer WJSpiering BAet al. Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men. J Strength Cond Res. 2006;20(4):819823. PubMed ID: 17194239.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    de Salles BFSimão RMiranda FNovaes Jda SLemos AWillardson JM. Rest interval between sets in strength training. Sports Med. 2009;39(9):765777. PubMed ID: 19691365 doi:10.2165/11315230-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Willardson JM. A brief review: factors affecting the length of the rest interval between resistance exercise sets. J Strength Cond Res. 2006;20(4):978984. PubMed ID: 17194236.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Willardson JMBurkett LN. A comparison of 3 different rest intervals on the exercise volume completed during a workout. J Strength Cond Res. 2005;19(1):2326. PubMed ID: 15705039.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Senna GWillardson JMde Salles BFet al. The effect of rest interval length on multi and single-joint exercise performance and perceived exertion. J Strength Cond Res. 2011;25(11):31573162. PubMed ID: 21993029 doi:10.1519/JSC.0b013e318212e23b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Willardson JMBurkett LN. The effect of different rest intervals between sets on volume components and strength gains. J Strength Cond Res. 2008;22(1):146152. PubMed ID: 18296968 doi:10.1519/JSC.0b013e31815f912d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ball NIbbott PNorcott B. Effects of self-selected vs prescribed repetition configurations on force, velocity and power variables in a back squat. J Aust Strength Cond. 2017;25(4):2633.

    • Search Google Scholar
    • Export Citation
  • 17.

    De Salles BFPolito MDGoessler KFMannarino PMatta TTSimão R. Effects of fixed vs. self-suggested rest between sets in upper and lower body exercises performance. Eur J Sport Sci. 2016;16(8):927931. PubMed ID: 27050709 doi:10.1080/17461391.2016.1161831

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Taylor KLCronin JGill NDChapman DWSheppard J. Sources of variability in iso-inertial jump assessments. Int J Sports Physiol Perform. 2010;5(4):546558. PubMed ID: 21266738 doi:10.1123/ijspp.5.4.546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hermens HJFreriks BDisselhorst-Klug CRau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361374. PubMed ID: 11018445 doi:10.1016/S1050-6411(00)00027-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Day MLMcGuigan MRBrice GFoster C. Monitoring exercise intensity during resistance training using the session RPE scale. J Strength Cond Res. 2004;18(2):353358. PubMed ID: 15142026

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bates DMächler MBolker BWalker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):148. doi:10.18637/jss.v067.i01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Stone MRThomas KWilkinson MSt Clair Gibson AThompson KG. Consistency of perceptual and metabolic responses to a laboratory-based simulated 4,000-m cycling time trial. Eur J Appl Physiol. 2011;111(8):18071813. PubMed ID: 21222130 doi:10.1007/s00421-010-1818-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Thomas KStone MRThompson KGGibson ASCAnsley L. Reproducibility of pacing strategy during simulated 20-km cycling time trials in well-trained cyclists. Eur J Appl Physiol. 2012;112(1):223229. PubMed ID: 21533808 doi:10.1007/s00421-011-1974-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Goessler KFPolito MD. Effect of fixed and self-suggested rest intervals between sets of resistance exercise on post-exercise cardiovascular behavior. Rev Bras de Cineantropom Desempenho Hum. 2013;15:467475. doi:10.5007/1980-0037.2013v15n4p467

    • Search Google Scholar
    • Export Citation
  • 25.

    Finn HTBrennan SLGonano BMet al. Muscle activation does not increase after a fatigue plateau is reached during 8 sets of resistance exercise in trained individuals. J Strength Cond Res. 2014;28(5):12261234. PubMed ID: 24751657 doi:10.1097/JSC.0000000000000226

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Izquierdo MGonzález-Izal MNavarro-Amezqueta Iet al. Effects of strength training on muscle fatigue mapping from surface EMG and blood metabolites. Med Sci Sports Exerc. 2011;43(2):303311. PubMed ID: 20581711 doi:10.1249/MSS.0b013e3181edfa96

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Walker SDavis LAvela JHakkinen K. Neuromuscular fatigue during dynamic maximal strength and hypertrophic resistance loadings. J Electromyogr Kinesiol. 2012;22(3):356362. PubMed ID: 22245619 doi:10.1016/j.jelekin.2011.12.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lagally KMRobertson RJGallagher KIet al. Perceived exertion, electromyography, and blood lactate during acute bouts of resistance exercise. Med Sci Sports Exerc. 2002;34(3):552559; discussion 560. PubMed ID: 11880823 doi:10.1097/00005768-200203000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bogdanis GCNevill MEBoobis LHLakomy HK. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996;80(3):876884. PubMed ID: 8964751 doi:10.1152/jappl.1996.80.3.876

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sánchez-Medina LGonzález-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43(9):17251734. PubMed ID: 21311352 doi:10.1249/MSS.0b013e318213f880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Stewart DFarina DShen CMacaluso A. Muscle fibre conduction velocity during a 30-s Wingate anaerobic test. J Electromyogr Kinesiol. 2011;21(3):418422. PubMed ID: 21419647 doi:10.1016/j.jelekin.2011.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hasson SMWilliams JHSignorile JF. Fatigue-induced changes in myoelectric signal characteristics and perceived exertion. Can J Sport Sci. 1989;14(2):99102. PubMed ID: 2736449

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Randell ADCronin JBKeogh JWLGill NDPedersen MC. Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. J Strength Cond Res. 2011;25(1):8793. PubMed ID: 21157389 doi:10.1519/JSC.0b013e3181fee634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 54 54 54
Full Text Views 3 3 3
PDF Downloads 3 3 3

Altmetric Badge

PubMed

Google Scholar