The Effect of Self-Paced and Prescribed Interset Rest Strategies on Performance in Strength Training

Click name to view affiliation

Peter Ibbott
Search for other papers by Peter Ibbott in
Current site
Google Scholar
PubMed
Close
,
Nick Ball
Search for other papers by Nick Ball in
Current site
Google Scholar
PubMed
Close
,
Marijke Welvaert
Search for other papers by Marijke Welvaert in
Current site
Google Scholar
PubMed
Close
, and
Kevin G. Thompson
Search for other papers by Kevin G. Thompson in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To assess pacing strategies using prescribed and self-selected interset rest periods and their influence on performance in strength-trained athletes. Methods: A total of 16 strength-trained male athletes completed 3 randomized heavy strength-training sessions (5 sets and 5 repetitions) with different interset rest periods. The interset rest periods were 3 min (3MIN), 5 min (5MIN), and self-selected (SS). Mechanical (power, velocity, work, and displacement), surface electromyography (sEMG), and subjective (rating of perceived exertion) and readiness-to-lift data were recorded for each set. Results: SS-condition interset rest periods increased from sets 1 to 4 (from 207.52 to 277.71 s; P = .01). No differences in mechanical performance were shown between the different interset rest-period conditions. Power output (210 W; 8.03%) and velocity (0.03 m·s−1; 6.73%) decreased as sets progressed for all conditions (P < .001) from set 1 to set 5. No differences in sEMG activity between conditions were shown; however, vastus medialis sEMG decreased as the sets progressed for each condition (1.75%; P = .005). All conditions showed increases in rating of perceived exertion as sets progressed (set 1 = 6.1, set 5 = 7.9; P < .001). Participants reported greater readiness to lift in the 5MIN condition (7.81) than in the 3MIN (7.09) and SS (7.20) conditions (P < .001). Conclusions: Self-selecting interset rest periods does not significantly change performance compared with 3MIN and 5MIN conditions. Given the opportunity, athletes will vary their interset rest periods to complete multiple sets of heavy strength training. Self-selection of interset rest periods may be a feasible alternative to prescribed interset rest periods.

The authors are with the Faculty of Health, Research Inst for Sport and Exercise, University of Canberra, Bruce, Canberra, ACT, Australia. Thompson is also with the New South Wales Inst of Sport, Sydney Olympic Park, Sydney, NSW, Australia.

Ball (nick.ball@canberra.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Foster C, Schrager M, Snyder AC, Thompson NN. Pacing strategy and athletic performance. Sports Med. 1994;17(2):7785. PubMed ID: 8171225 doi:10.2165/00007256-199417020-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Abbiss CR, Laursen PB. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008;38(3):239252. PubMed ID: 18278984 doi:10.2165/00007256-200838030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Thompson K. Pacing: Individual Strategies for Optimal Performance. Champaign, IL: Human Kinetics; 2014.

  • 4.

    Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Cell Mol Life Sci. 1996;52(5):416420. doi:10.1007/BF01919309

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Noakes TD. Time to move beyond a brainless exercise physiology: the evidence for complex regulation of human exercise performance. Appl Physiol Nutr Metab. 2011;36(1):2335. PubMed ID: 21326375 doi:10.1139/H10-082

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Tucker R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med. 2009;43(6):392400. PubMed ID: 19224911 doi:10.1136/bjsm.2008.050799

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Marcora S. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol. 2009;106(6):20602062. PubMed ID: 18483166 doi:10.1152/japplphysiol.90378.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Edwards AM, Polman RC. Pacing and awareness: brain regulation of physical activity. Sports Med. 2013;43(11):10571064. PubMed ID: 23990402 doi:10.1007/s40279-013-0091-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Renfree A, Martin L, Micklewright D, St Clair Gibson A. Application of decision-making theory to the regulation of muscular work rate during self-paced competitive endurance activity. Sports Med. 2014;44(2):147158. PubMed ID: 24113898 doi:10.1007/s40279-013-0107-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Shimano T, Kraemer WJ, Spiering BA, et al. Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men. J Strength Cond Res. 2006;20(4):819823. PubMed ID: 17194239.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    de Salles BF, Simão R, Miranda F, Novaes Jda S, Lemos A, Willardson JM. Rest interval between sets in strength training. Sports Med. 2009;39(9):765777. PubMed ID: 19691365 doi:10.2165/11315230-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Willardson JM. A brief review: factors affecting the length of the rest interval between resistance exercise sets. J Strength Cond Res. 2006;20(4):978984. PubMed ID: 17194236.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Willardson JM, Burkett LN. A comparison of 3 different rest intervals on the exercise volume completed during a workout. J Strength Cond Res. 2005;19(1):2326. PubMed ID: 15705039.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Senna G, Willardson JM, de Salles BF, et al. The effect of rest interval length on multi and single-joint exercise performance and perceived exertion. J Strength Cond Res. 2011;25(11):31573162. PubMed ID: 21993029 doi:10.1519/JSC.0b013e318212e23b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Willardson JM, Burkett LN. The effect of different rest intervals between sets on volume components and strength gains. J Strength Cond Res. 2008;22(1):146152. PubMed ID: 18296968 doi:10.1519/JSC.0b013e31815f912d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ball N, Ibbott P, Norcott B. Effects of self-selected vs prescribed repetition configurations on force, velocity and power variables in a back squat. J Aust Strength Cond. 2017;25(4):2633.

    • Search Google Scholar
    • Export Citation
  • 17.

    De Salles BF, Polito MD, Goessler KF, Mannarino P, Matta TT, Simão R. Effects of fixed vs. self-suggested rest between sets in upper and lower body exercises performance. Eur J Sport Sci. 2016;16(8):927931. PubMed ID: 27050709 doi:10.1080/17461391.2016.1161831

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Taylor KL, Cronin J, Gill ND, Chapman DW, Sheppard J. Sources of variability in iso-inertial jump assessments. Int J Sports Physiol Perform. 2010;5(4):546558. PubMed ID: 21266738 doi:10.1123/ijspp.5.4.546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361374. PubMed ID: 11018445 doi:10.1016/S1050-6411(00)00027-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Day ML, McGuigan MR, Brice G, Foster C. Monitoring exercise intensity during resistance training using the session RPE scale. J Strength Cond Res. 2004;18(2):353358. PubMed ID: 15142026

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):148. doi:10.18637/jss.v067.i01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Stone MR, Thomas K, Wilkinson M, St Clair Gibson A, Thompson KG. Consistency of perceptual and metabolic responses to a laboratory-based simulated 4,000-m cycling time trial. Eur J Appl Physiol. 2011;111(8):18071813. PubMed ID: 21222130 doi:10.1007/s00421-010-1818-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Thomas K, Stone MR, Thompson KG, Gibson ASC, Ansley L. Reproducibility of pacing strategy during simulated 20-km cycling time trials in well-trained cyclists. Eur J Appl Physiol. 2012;112(1):223229. PubMed ID: 21533808 doi:10.1007/s00421-011-1974-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Goessler KF, Polito MD. Effect of fixed and self-suggested rest intervals between sets of resistance exercise on post-exercise cardiovascular behavior. Rev Bras de Cineantropom Desempenho Hum. 2013;15:467475. doi:10.5007/1980-0037.2013v15n4p467

    • Search Google Scholar
    • Export Citation
  • 25.

    Finn HT, Brennan SL, Gonano BM, et al. Muscle activation does not increase after a fatigue plateau is reached during 8 sets of resistance exercise in trained individuals. J Strength Cond Res. 2014;28(5):12261234. PubMed ID: 24751657 doi:10.1097/JSC.0000000000000226

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Izquierdo M, González-Izal M, Navarro-Amezqueta I, et al. Effects of strength training on muscle fatigue mapping from surface EMG and blood metabolites. Med Sci Sports Exerc. 2011;43(2):303311. PubMed ID: 20581711 doi:10.1249/MSS.0b013e3181edfa96

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Walker S, Davis L, Avela J, Hakkinen K. Neuromuscular fatigue during dynamic maximal strength and hypertrophic resistance loadings. J Electromyogr Kinesiol. 2012;22(3):356362. PubMed ID: 22245619 doi:10.1016/j.jelekin.2011.12.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lagally KM, Robertson RJ, Gallagher KI, et al. Perceived exertion, electromyography, and blood lactate during acute bouts of resistance exercise. Med Sci Sports Exerc. 2002;34(3):552559; discussion 560. PubMed ID: 11880823 doi:10.1097/00005768-200203000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996;80(3):876884. PubMed ID: 8964751 doi:10.1152/jappl.1996.80.3.876

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sánchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43(9):17251734. PubMed ID: 21311352 doi:10.1249/MSS.0b013e318213f880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Stewart D, Farina D, Shen C, Macaluso A. Muscle fibre conduction velocity during a 30-s Wingate anaerobic test. J Electromyogr Kinesiol. 2011;21(3):418422. PubMed ID: 21419647 doi:10.1016/j.jelekin.2011.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hasson SM, Williams JH, Signorile JF. Fatigue-induced changes in myoelectric signal characteristics and perceived exertion. Can J Sport Sci. 1989;14(2):99102. PubMed ID: 2736449

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Randell AD, Cronin JB, Keogh JWL, Gill ND, Pedersen MC. Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. J Strength Cond Res. 2011;25(1):8793. PubMed ID: 21157389 doi:10.1519/JSC.0b013e3181fee634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2308 421 12
Full Text Views 48 20 2
PDF Downloads 30 9 0