The Temporal Relationship Between Exercise, Recovery Processes, and Changes in Performance

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Sabrina Skorski
Search for other papers by Sabrina Skorski in
Current site
Google Scholar
PubMed
Close
,
Iñigo Mujika
Search for other papers by Iñigo Mujika in
Current site
Google Scholar
PubMed
Close
,
Laurent Bosquet
Search for other papers by Laurent Bosquet in
Current site
Google Scholar
PubMed
Close
,
Romain Meeusen
Search for other papers by Romain Meeusen in
Current site
Google Scholar
PubMed
Close
,
Aaron J. Coutts
Search for other papers by Aaron J. Coutts in
Current site
Google Scholar
PubMed
Close
, and
Tim Meyer
Search for other papers by Tim Meyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Physiological and psychological demands during training and competition generate fatigue and reduce an athlete’s sport-specific performance capacity. The magnitude of this decrement depends on several characteristics of the exercise stimulus (eg, type, duration, and intensity), as well as on individual characteristics (eg, fitness, profile, and fatigue resistance). As such, the time required to fully recover is proportional to the level of fatigue, and the consequences of exercise-induced fatigue are manifold. Whatever the purpose of the ensuing exercise session (ie, training or competition), it is crucial to understand the importance of optimizing the period between exercise bouts in order to speed up the regenerative processes and facilitate recovery or set the next stimulus at the optimal time point. This implies having a fairly precise understanding of the fatigue mechanisms that contribute to the performance decrement. Failing to respect an athlete’s recovery needs may lead to an excessive accumulation of fatigue and potentially “nonfunctional overreaching” or to maladaptive training. Although research in this area recently increased, considerations regarding the specific time frames for different physiological mechanisms in relation to exercise-induced fatigue are still missing. Furthermore, recommendations on the timing and dosing of recovery based on these time frames are limited. Therefore, the aim of this article is to describe time courses of recovery in relation to the exercise type and on different physiological levels. This summary supports coaches, athletes, and scientists in their decision-making process by considering the relationship of exercise type, physiology, and recovery.

Skorski and Meyer are with the Inst of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany. Mujika is with the Dept of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain, and the Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Finis Terrae University, Santiago, Chile. Bosquet is with the Faculty of Sport Sciences, MOVE Laboratory (EA 3813), University of Poitiers, Poitiers, France. Coutts is with the Sport and Exercise Discipline Group, Faculty of Health, University of Technology Sydney (UTS), Moore Park, NSW, Australia. Meeusen is with the Human Physiology Research Group, Vrije Universiteit Brussel, Brussels, Belgium.

Skorski (s.skorski@mx.uni-saarland.de) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Hausswirth C, Mujika I, eds. Recovery for Performance in Sport. Champaign, IL: Human Kinetics; 2013. ISBN 9781450434348.

  • 2.

    Meeusen R, Duclos M, Foster C, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45(1):186205. PubMed ID: 23247672 doi:10.1249/MSS.0b013e318279a10a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Vanrenterghem J, Nedergaard NJ, Robinson MA, Drust B. Training load monitoring in team sports: a novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med. 2017;47(11):21352142. PubMed ID: 28283992 doi:10.1007/s40279-017-0714-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lambert MI, Mujika I. Physiology of exercise training. In: Hausswirth C, Mujika I, eds. Recovery for Performance in Sport. Champaign, IL: Human Kinetics; 2013.

    • Search Google Scholar
    • Export Citation
  • 5.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313338. PubMed ID: 23539308 doi:10.1007/s40279-013-0029-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    di Prampero PE, Atchou G, Bruckner JC, Moia C. The energetics of endurance running. Eur J Appl Physiol Occup Physiol. 1986;55(3):259266. PubMed ID: 3732253 doi:10.1007/BF02343797

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Gaudino P, Alberti G, Iaia FM. Estimated metabolic and mechanical demands during different small-sided games in elite soccer players. Hum Mov Sci. 2014;36:123133. PubMed ID: 24968370 doi:10.1016/j.humov.2014.05.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kellmann M, Bertollo M, Bosquet L, et al. Recovery and performance in sport: consensus statement. Int J Sports Physiol Perform. 2018;13(2):240245. PubMed ID: 29345524 doi:10.1123/ijspp.2017-0759

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Julian R, Meyer T, Fullagar HH, et al. Individual patterns in blood-borne indicators of fatigue—trait or chance. J Strength Cond Res. 2017;31:608619. doi:10.1519/JSC.0000000000001390

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hecksteden A, Pitsch W, Julian R, et al. A new method to individualize monitoring of muscle recovery in athletes. Int J Sports Physiol Perform. 2017;12(9):11371142. PubMed ID: 27967274 doi:10.1123/ijspp.2016-0120

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer: part I—post-match fatigue and time course of recovery. Sports Med. 2012;42(12):9971015. PubMed ID: 23046224

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    McMahon S, Jenkins D. Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Med. 2002;32(12):761784. PubMed ID: 12238940 doi:10.2165/00007256-200232120-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Minett GM, Duffield R. Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise. Front Physiol. 2014;5:24. PubMed ID: 24550837 doi:10.3389/fphys.2014.00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Burke LM, Mujika I. Nutrition for recovery in aquatic sports. Int J Sport Nutr Exerc Metab. 2014;24(4):425436. PubMed ID: 24901517 doi:10.1123/ijsnem.2014-0022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cairns SP. Lactic acid and exercise performance: culprit or friend? Sports Med. 2006;36(4):279291. PubMed ID: 16573355 doi:10.2165/00007256-200636040-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Pedersen TH, Nielsen OB, Lamb GD, Stephenson DG. Intracellular acidosis enhances the excitability of working muscle. Science. 2004;305(5687):11441147. PubMed ID: 15326352 doi:10.1126/science.1101141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994;74(1):4994. PubMed ID: 8295935 doi:10.1152/physrev.1994.74.1.49

  • 18.

    Ascensão A, Rebelo A, Oliveira E, Marques F, Pereira L, Magalhaes J. Biochemical impact of a soccer match—analysis of oxidative stress and muscle damage markers throughout recovery. Clin Biochem. 2008;41(10–11):841851. PubMed ID: 18457670 doi:10.1016/j.clinbiochem.2008.04.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Close GL, Ashton T, McArdle A, Maclaren DP. The emerging role of free radicals in delayed onset muscle soreness and contraction-induced muscle injury. Comp Biochem Physiol A Mol Integr Physiol. 2005;142(3):257266. PubMed ID: 16153865 doi:10.1016/j.cbpa.2005.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ross EZ, Goodall S, Stevens A, Harris I. Time course of neuromuscular changes during running in well-trained subjects. Med Sci Sports Exerc. 2010;42(6):11841190. PubMed ID: 19997016

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Duffield R, Murphy A, Snape A, Minett GM, Skein M. Post-match changes in neuromuscular function and the relationship to match demands in amateur rugby league matches. J Sci Med Sport. 2012;15(3):238243. PubMed ID: 22137196 doi:10.1016/j.jsams.2011.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ispirlidis I, Fatouros IG, Jamurtas AZ, et al. Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med. 2008;18(5):423431. PubMed ID: 18806550 doi:10.1097/JSM.0b013e3181818e0b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Rampinini E, Bosio A, Ferraresi I, Petruolo A, Morelli A, Sassi A. Match-related fatigue in soccer players. Med Sci Sports Exerc. 2011;43(11):21612170. PubMed ID: 21502891 doi:10.1249/MSS.0b013e31821e9c5c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL. Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med Sci Sports Exerc. 2016;48(11):22942306. PubMed ID: 27003703 doi:10.1249/MSS.0000000000000923

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Roelands B, Meeusen R. Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature. Sports Med. 2010;40(3):229246. PubMed ID: 20199121 doi:10.2165/11533670-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF. Central fatigue: the serotonin hypothesis and beyond. Sports Med. 2006;36(10):881909. PubMed ID: 17004850 doi:10.2165/00007256-200636100-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Meeusen R, Piacentini MF, De Meirleir K. Brain microdialysis in exercise research. Sports Med. 2001;31(14):965983. PubMed ID: 11735681 doi:10.2165/00007256-200131140-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Klass M, Roelands B, Levenez M, et al. Effects of noradrenaline and dopamine on supraspinal fatigue in well-trained men. Med Sci Sports Exerc. 2012;44(12):22992308. doi:10.1249/MSS.0b013e318265f356

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Goodall S, Charlton K, Howatson G, Thomas K. Neuromuscular fatigability during repeated-sprint exercise in male athletes. Med Sci Sports Exerc. 2015;47(3):528536. PubMed ID: 25010404 doi:10.1249/MSS.0000000000000443

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Thomas K, Dent J, Howatson G, Goodall S. Etiology and recovery of neuromuscular fatigue after simulated soccer match play. Med Sci Sports Exerc. 2017;49(5):955964. PubMed ID: 28060035 doi:10.1249/MSS.0000000000001196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Thomas K, Goodall S, Stone M, Howatson G, St Clair Gibson A, Ansley L. Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Med Sci Sports Exerc. 2015;47(3):537546. PubMed ID: 25051388 doi:10.1249/MSS.0000000000000448

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    De Pauw K, Roelands B, Marusic U, Tellez HF, Knaepen K, Meeusen R. Brain mapping after prolonged cycling and during recovery in the heat. J Appl Physiol. 2013;115(9):13241331. PubMed ID: 23990240 doi:10.1152/japplphysiol.00633.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Rattray B, Argus C, Martin K, Northey J, Driller M. Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance? Front Physiol. 2015;6:79. PubMed ID: 25852568 doi:10.3389/fphys.2015.00079

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol. 1999;86(3):10321039. PubMed ID: 10066720 doi:10.1152/jappl.1999.86.3.1032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Brad RA. Exercise and fluid replacement: brought to you by the American College of Sports Medicine www.acsm.org. ACSM Health Fitness J. 2013;17(4):47.

    • Search Google Scholar
    • Export Citation
  • 36.

    Furlan R, Piazza S, Orto SD, et al. Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovasc Res. 1993;27(3):482488. PubMed ID: 8490949 doi:10.1093/cvr/27.3.482

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Hautala A, Tulppo MP, Makikallio TH, Laukkanen R, Nissila S, Huikuri HV. Changes in cardiac autonomic regulation after prolonged maximal exercise. Clin Physiol. 2001;21(2):238245. PubMed ID: 11318832 doi:10.1046/j.1365-2281.2001.00309.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Al Haddad H, Laursen PB, Ahmaidi S, Buchheit M. Nocturnal heart rate variability following supramaximal intermittent exercise. Int J Sports Physiol Perform. 2009;4(4):435447. PubMed ID: 20029095 doi:10.1123/ijspp.4.4.435

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Skorski S, Hammes D, Schwindling S, et al. Effects of training-induced fatigue on pacing patterns in 40-km cycling time trials. Med Sci Sports Exerc. 2015;47(3):593600. doi:10.1249/MSS.0000000000000439

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Bessa AL, Oliveira VN, Agostini GG, et al. Exercise intensity and recovery: biomarkers of injury, inflammation, and oxidative stress. J Strength Cond Res. 2016;30(2):311319. PubMed ID: 23604000 doi:10.1519/JSC.0b013e31828f1ee9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and inflammation during recovery from exercise. J Appl Physiol. 2017;122(3):559570. PubMed ID: 28035017 doi:10.1152/japplphysiol.00971.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Mujika I, Halson S, Burke LM, Balague G, Farrow D. An integrated, multifactorial approach to periodization for optimal performance in individual and team sports. Int J Sports Physiol Perform. 2018;13(5):538561. PubMed ID: 29848161 doi:10.1123/ijspp.2018-0093

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Roberts LA, Raastad T, Markworth JF, et al. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol. 2015;593(18):42854301. PubMed ID: 26174323 doi:10.1113/JP270570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Halson SL, Bartram J, West N, et al. Does hydrotherapy help or hinder adaptation to training in competitive cyclists? Med Sci Sports Exerc. 2014;46(8):16311639. doi:10.1249/MSS.0000000000000268

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Ihsan M, Markworth JF, Watson G, et al. Regular postexercise cooling enhances mitochondrial biogenesis through AMPK and p38 MAPK in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2015;309(3):R286R294. PubMed ID: 26041108 doi:10.1152/ajpregu.00031.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Broatch JR, Petersen A, Bishop DJ. Cold-water immersion following sprint interval training does not alter endurance signaling pathways or training adaptations in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2017;313(4):R372R384. PubMed ID: 28679683 doi:10.1152/ajpregu.00434.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Tavares F, Walker O, Healey P, Smith TB, Driller M. Practical applications of water immersion recovery modalities for team sports. Strength Cond J. 2018;40(4):4860.

    • Search Google Scholar
    • Export Citation
  • 48.

    Fullagar HH, Skorski S, Duffield R, Hammes D, Coutts AJ, Meyer T. Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med. 2015;45(2):161186. doi:10.1007/s40279-014-0260-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Nedelec M, Halson S, Abaidia AE, Ahmaidi S, Dupont G. Stress, sleep and recovery in elite soccer: a critical review of the literature. Sports Med. 2015;45(10):13871400. PubMed ID: 26206724 doi:10.1007/s40279-015-0358-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    McCartney D, Desbrow B, Irwin C. Post-exercise ingestion of carbohydrate, protein and water: a systematic review and meta-analysis for effects on subsequent athletic performance. Sports Med. 2018;48(2):379408. doi:10.1007/s40279-017-0800-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Heaton LE, Davis JK, Rawson ES, et al. Selected in-season nutritional strategies to enhance recovery for team sport athletes: a practical overview. Sports Med. 2017;47(11):22012218. PubMed ID: 28702900 doi:10.1007/s40279-017-0759-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Poppendieck W, Faude O, Wegmann M, Meyer T. Cooling and performance recovery of trained athletes: a meta-analytical review. Int J Sports Physiol Perform. 2013;8(3):227242. PubMed ID: 23434565 doi:10.1123/ijspp.8.3.227

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Leeder J, Gissane C, van Someren K, Gregson W, Howatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46(4):233240. PubMed ID: 21947816 doi:10.1136/bjsports-2011-090061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 9946 1962 161
Full Text Views 361 65 13
PDF Downloads 347 80 17