High Match Load’s Relation to Decreased Well-Being During an Elite Women’s Rugby Sevens Tournament

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

During rugby sevens tournaments, it is crucial to balance match load and recovery to strive for optimal performance. Purpose: To determine changes in well-being, recovery, and neuromuscular performance during and after an elite women’s rugby sevens tournament and assess the influence of match-load indicators. Methods: Twelve elite women rugby sevens players (age = 25.3 [4.1]y, height = 169.0 [4.0] cm, weight = 63.9 [4.9] kg, and body fat = 18.6% [2.7%]) performed 5 matches during a 2-d tournament of the Women’s Rugby Sevens World Series. Perceived well-being (fatigue, sleep quality, general muscle soreness, stress levels, and mood), total quality of recovery, and countermovement-jump flight time were measured on match days 1 and 2, 1 d posttournament, and 2 d posttournament. Total distance; low-, moderate-, and high-intensity running; and physical contacts during matches were derived from global positioning system–based time–motion analysis and video-based notational analysis, respectively. Internal match load was calculated by session rating of perceived exertion and playing time (rating of perceived exertion × duration). Results: Well-being (P < .001), fatigue (P < .001), general muscle soreness (P < .001), stress levels (P < .001), mood (P = .005), and total quality of recovery (P < .001) were significantly impaired after match day 1 and did not return to baseline values until 2 d posttournament. More high-intensity running was related to more fatigue (r = −.60, P = .049) and a larger number of physical contacts with more general muscle soreness (r = −.69, P = .013). Conclusion: Perceived well-being and total quality of recovery were already impaired after match day 1, although performance was maintained. High-intensity running and physical contacts were predominantly related to fatigue and general muscle soreness, respectively.

Doeven, Brink, Huijgen, and Lemmink are with the Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. Doeven and de Jong are with the School of Sport Studies, Hanze University of Applied Sciences, Groningen, the Netherlands.

Doeven (s.h.doeven@pl.hanze.nl) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Clarke ACAnson JPyne D. Physiologically based GPS speed zones for evaluating running demands in Women’s Rugby Sevens. J Sports Sci. 2015;33:11011108. PubMed ID: 25510337 doi:10.1080/02640414.2014.988740

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Granatelli GGabbett TJBriotti Get al. Match analysis and temporal patterns of fatigue in rugby sevens. J Strength Cond Res. 2014;28:728734. PubMed ID: 23722109 doi:10.1519/JSC.0b013e31829d23c3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Higham DGPyne DBAnson JMEddy A. Movements patterns in rugby sevens: effects of tournament level, fatigue and substitute players. J Sci Med Sport. 2012;15:277282. PubMed ID: 22188846 doi:10.1016/j.jsams.2011.11.256

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Suarez-Arrones LNuñez FJPortillo JMendez-Villanueva A. Match running performance and exercise intensity in elite female rugby sevens. J Strength Cond Res. 2012;26:18581862. PubMed ID: 21964426 doi:10.1519/JSC.0b013e318238ea3e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    McLellan CPLovell DI. Neuromuscular responses to impact and collision during elite rugby league match play. J Strength Cond Res. 2012;26:14311440. PubMed ID: 22516913 doi:10.1519/JSC.0b013e318231a627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Takahashi IUmeda TMashiko Tet al. Effects of rugby sevens matches on human neutrophil-related non-specific immunity. Br J Sports Med. 2007;41:1318. PubMed ID: 17035481 doi:10.1136/bjsm.2006.027888

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    McLean BDCoutts AJKelly VMcGuigan MRCormack SJ. Neuromuscular, endocrine, and perceptual fatigue responses during different length between-match microcycles in professional rugby league players. Int J Sports Physiol Perform. 2010;5:367383. PubMed ID: 20861526 doi:10.1123/ijspp.5.3.367

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    West DJCook CJStokes KAet al. Profiling the time-course changes in neuromuscular function and muscle damage over two consecutive tournament stages in elite rugby sevens players. J Sci Med Sport. 2014;17:688692. PubMed ID: 24332752 doi:10.1016/j.jsams.2013.11.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dupont GNédélec MMcCall AMcCormack DBerthoin SWisløff U. Effect of 2 soccer matches in a week on physical performance and injury rate. Am J Sports Med. 2010;38:17521758. PubMed ID: 20400751 doi:10.1177/0363546510361236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Kellmann MBertollo MBosquet Let al. Recovery and performance in sport: consensus statement. Int J Sports Physiol Perform. 2018;13:240245. PubMed ID: 29345524 doi:10.1123/ijspp.2017-0759

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    de Hoyo MCohen DDSañudo Bet al. Influence of football match time-motion parameters on recovery time course of muscle damage and jump ability. J Sports Sci. 2016;34:13631370. PubMed ID: 26930226 doi:10.1080/02640414.2016.1150603

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Saw AEMain LCGastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50:281291. PubMed ID: 26423706 doi:10.1136/bjsports-2015-094758

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Nikolaidis PTClemente FMvan der Linden CMIRosemann TKnechtle B. Validity and reliability of 10-Hz global positioning system to assess in-line movement and change of direction. Front Physiol. 2018;9:228. PubMed ID: 29599725 doi:10.3389/fphys.2018.00228

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Scott MTScott TJKelly VG. The validity and reliability of global positioning systems in team sport: a brief review. J Strength Cond Res. 2016;30:14701490. PubMed ID: 26439776 doi:10.1519/JSC.0000000000001221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    James NMellalieu SDJones NM. The development of position-specific performance indicators in professional rugby union. J Sports Sci. 2005;23:6372. PubMed ID: 15841596 doi:10.1080/02640410410001730106

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Foster CFlorhaug JAFranklin Jet al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15:109115. PubMed ID: 11708692

  • 17.

    Elloumi MMakni EMoalla Wet al. Monitoring training load and fatigue in rugby sevens players. Asian J Sports Med. 2012;3:175184. PubMed ID: 23012637 doi:10.5812/asjsm.34688

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hooper SLMackinnon LT. Monitoring overtraining in athletes: recommendations. Sports Med. 1995;20(5):321327. PubMed ID: 8571005 doi:10.2165/00007256-199520050-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kenttä GHassmén P. Overtraining and recovery. A conceptual model. Sports Med. 1998;26:116. doi:10.2165/00007256-199826010-00001

  • 20.

    Cormack SJNewton RUMcGuigan MRDoyle TL. Reliability of measures obtained during single and repeated countermovement jumps. Int J Sports Physiol Perform. 2008;3:131144. PubMed ID: 19208922 doi:10.1123/ijspp.3.2.131

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lacome MCarling CHager JPDine GPiscione J. Workload, fatigue, and muscle damage in an under-20 rugby union team over an intensified international tournament. Int J Sports Physiol Perform. 2018;13:10591066. doi:10.1123/ijspp.2017-0464

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Rasbash JSteele FBrowne WJGoldstein HCharlton C. A User’s Guide to MLwiN. Bristol, UK: University of Bristol; 2015.

  • 23.

    Hinkle DEWiersma WJurs SG. Applied Statistics for the Behavioral Sciences. 5th ed. Boston, MA: Houghton Mifflin; 2003.

  • 24.

    Twist CHighton JDaniels MMill NClose G. Player responses to match and training demands during an intensified fixture schedule in professional rugby league: a case study. Int J Sports Physiol Perform. 2017;12:10931099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Twist CWaldron MHighton JBurt DDaniels M. Neuromuscular, biochemical and perceptual post-match fatigue in professional rugby league forwards and backs. J Sports Sci. 2012;30:359367. PubMed ID: 22176201 doi:10.1080/02640414.2011.640707

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Takarada Y. Evaluation of muscle damage after a rugby match with special reference to tackle plays. Br J Sports Med. 2003;37:416419. PubMed ID: 14514532 doi:10.1136/bjsm.37.5.416

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Sawczuk TJones BScantlebury STill K. The influence of training load, exposure to match play and sleep duration on daily wellbeing measures in youth athletes. J Sports Sci. 2018;36(21):24312437. PubMed ID: 29620966 doi:10.1080/02640414.20181461337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Vanrenterghem JNedergaard NJRobinson MADrust B. Training load monitoring in team sports: a novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med. 2017;47(11):21352142. PubMed ID: 28283992 doi:10.1007/s40279-017-0714-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Doeven SHBrink MSKosse SJLemmink KAPM. Postmatch recovery of physical performance and biochemical markers in team ball sports: a systematic review. BMJ Open Sport Exerc Med. 2018;4(1):e000264. PubMed ID: 29527320 doi:10.1136/bmjsem-2017-000264

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Tavares FSmith TBDriller M. Fatigue and recovery in rugby: a review. Sports Med. 2017;47(8):15151530. PubMed ID: 28150163 doi:10.1007/s40279-017-0679-1

  • 31.

    Pelka MKölling SFerrauti AMeyer TPfeiffer MKellmann M. Acute effects of psychological relaxation techniques between two physical tasks. J Sports Sci. 2017;35(3):216223. PubMed ID: 26999625 doi:10.1080/02640414.2016.1161208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 69 69 47
Full Text Views 16 16 6
PDF Downloads 10 10 6
Altmetric Badge
PubMed
Google Scholar
Cited By