Impairment of Cycling Capacity in the Heat in Well-Trained Endurance Athletes After High-Intensity Short-Term Heat Acclimation

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Thomas Reeve
Search for other papers by Thomas Reeve in
Current site
Google Scholar
PubMed
Close
,
Ralph Gordon
Search for other papers by Ralph Gordon in
Current site
Google Scholar
PubMed
Close
,
Paul B. Laursen
Search for other papers by Paul B. Laursen in
Current site
Google Scholar
PubMed
Close
,
Jason K.W. Lee
Search for other papers by Jason K.W. Lee in
Current site
Google Scholar
PubMed
Close
, and
Christopher J. Tyler
Search for other papers by Christopher J. Tyler in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To investigate the effects of short-term, high-intensity interval-training (HIIT) heat acclimation (HA). Methods: Male cyclists/triathletes were assigned into either an HA (n = 13) or a comparison (COMP, n = 10) group. HA completed 3 cycling heat stress tests (HSTs) to exhaustion (60% Wmax; HST1, pre-HA; HST2, post-HA; HST3, 7 d post-HA). HA consisted of 30-min bouts of HIIT cycling (6 min at 50% Wmax, then 12 × 1-min 100%-Wmax bouts with 1-min rests between bouts) on 5 consecutive days. COMP completed HST1 and HST2 only. HST and HA trials were conducted in 35°C/50% relative humidity. Cycling capacity and physiological and perceptual data were recorded. Results: Cycling capacity was impaired after HIIT HA (77.2 [34.2] min vs 56.2 [24.4] min, P = .03) and did not return to baseline after 7 d of no HA (59.2 [37.4] min). Capacity in HST1 and HST2 was similar in COMP (43.5 [8.3] min vs 46.8 [15.7] min, P = .54). HIIT HA lowered resting rectal (37.0°C [0.3°C] vs 36.8°C [0.2°C], P = .05) and body temperature (36.0°C [0.3°C] vs 35.8°C [0.3°C], P = .03) in HST2 compared with HST1 and lowered mean skin temperature (35.4°C [0.5°C] vs 35.1°C [0.3°C], P = .02) and perceived strain on day 5 compared with day 1 of HA. All other data were unaffected. Conclusions: Cycling capacity was impaired in the heat after 5 d of consecutive HIIT HA despite some heat adaptation. Based on data, this approach is not recommended for athletes preparing to compete in the heat; however, it is possible that it may be beneficial if a state of overreaching is avoided.

Reeve, Gordon, and Tyler are with the Dept of Life Sciences, University of Roehampton, London, United Kingdom. Laursen is with Sports Performance Research Inst New Zealand, Auckland University of Technology, Auckland, New Zealand. Lee is with the Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

Reeve (T.Reeve@roehampton.ac.uk) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Guy JH, Deakin GB, Edwards AM, Miller CM, Pyne DB. Adaptation to hot environmental conditions: an exploration of the performance basis, procedures and future directions to optimise opportunities for elite athletes. Sports Med. 2015;45(3):303311. PubMed ID: 25380791 doi:10.1007/s40279-014-0277-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Tatterson AJ, Hahn AG, Martin DT, Febbraio MA. Effects of heat stress on physiological responses and exercise performance in elite cyclists. J Sci Med Sport. 2000;3(2):186193. PubMed ID: 11104310 doi:10.1016/S1440-2440(00)80080-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Taylor NA. Human heat adaptation. Compr Physiol. 2014;4(1):325365. PubMed ID: 24692142 doi:10.1002/cphy.c130022

  • 4.

    Tyler CJ, Reeve T, Hodges GJ, Cheung SS. The effects of heat adaptation on physiology, perception and exercise performance in the heat: a meta-analysis. Sports Med. 2016;46(11):16991724. PubMed ID: 27106556 doi:10.1007/s40279-016-0538-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Periard JD, Racinais S, Timpka T, et al. Strategies and factors associated with preparing for competing in the heat: a cohort study at the 2015 IAAF World Athletics Championships. Br J Sports Med. 2017;51(4):264270. PubMed ID: 27815238 doi:10.1136/bjsports-2016-096579

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(suppl 2):110. PubMed ID: 20840557 doi:10.1111/j.1600-0838.2010.01184.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276291. PubMed ID: 20861519 doi:10.1123/ijspp.5.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Houmard JA, Costill DL, Davis JA, Mitchell JB, Pascoe DD, Robergs RA. The influence of exercise intensity on heat acclimation in trained subjects. Med Sci Sports Exerc. 1990;22(5):615620. PubMed ID: 2233200 doi:10.1249/00005768-199010000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kelly M, Gastin PB, Dwyer DB, Sostaric S, Snow RJ. Short duration heat acclimation in Australian football players. J Sports Sci Med. 2016;15(1):118125. PubMed ID: 26957934

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Schmit C, Duffield R, Hausswirth C, Brisswalter J, Le Meur Y. Optimizing heat acclimation for endurance athletes: high- vs low-intensity training. Int J Sports Physiol Perform. 2018;13(6):816823. PubMed ID: 28872380 doi:10.1123/ijspp.2017-0007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Wingfield GL, Gale R, Minett GM, Marino FE, Skein M. The effect of high versus low intensity heat acclimation on performance and neuromuscular responses. J Therm Biol. 2016;58:5059. PubMed ID: 27157334 doi:10.1016/j.jtherbio.2016.02.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gibson OR, Dennis A, Parfitt T, Taylor L, Watt PW, Maxwell NS. Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure. Cell Stress Chaperones. 2014;19(3):389400. PubMed ID: 24085588 doi:10.1007/s12192-013-0468-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    American College of Sports Medicine Position Stand and American Heart Association. Recommendations for cardiovascular screening, staffing, and emergency policies at health/fitness facilities. Med Sci Sports Exerc. 1998;30(6):10091018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med. 1985;6(4):197201. PubMed ID: 4044103 doi:10.1055/s-2008-1025839

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Ramanathan NL. A new weighting system for mean surface temperature of the human body. J Appl Physiol. 1964;19(3):531533. PubMed ID: 14173555 doi:10.1152/jappl.1964.19.3.531

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Burton AC. Human calorimetry. 2. The average temperature of the tissues of the body. J Nutr. 1935;9:261280.

  • 17.

    Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):9298.

  • 18.

    Young AJ, Sawka MN, Epstein Y, Decristofano B, Pandolf KB. Cooling different body surfaces during upper and lower body exercise. J Appl Physiol. 1985;63(3):12181223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Dill DB, Costill DL. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol. 1974;37(2):247248. PubMed ID: 4850854 doi:10.1152/jappl.1974.37.2.247

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Mahwah, NJ: Lawrence Erlbaum; 1988.

  • 21.

    Armstrong LE, Francesconi RP, Kraemer WJ, Leva N, De Luca JP, Hubbard RW. Plasma cortisol, renin, and aldosterone during an intense heat acclimation program. Int J Sports Med. 1989;10(1):3842. PubMed ID: 2649446 doi:10.1055/s-2007-1024871

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Garrett AT, Creasy R, Rehrer NJ, Patterson MJ, Cotter JD. Effectiveness of short-term heat acclimation for highly trained athletes. Eur J Appl Physiol. 2012;112(5):18271837. PubMed ID: 21915701 doi:10.1007/s00421-011-2153-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Gibson OR, Turner G, Tuttle JA, Taylor L, Watt PW, Maxwell NS. Heat acclimation attenuates physiological strain and the HSP72, but not HSP90α, mRNA response to acute normobaric hypoxia. J Appl Physiol.2015; 119(8):889899. doi:10.1152/japplphysiol.00332.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Garrett AT, Goosens NG, Rehrer NJ, Patterson MJ, Cotter JD. Induction and decay of short-term heat acclimation. Eur J Appl Physiol. 2009;107(6):659670. PubMed ID: 19727796 doi:10.1007/s00421-009-1182-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Sunderland C, Morris JG, Nevill ME. A heat acclimation protocol for team sports. Br J Sports Med. 2008;42(5):327333. PubMed ID: 18460609 doi:10.1136/bjsm.2007.034207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Pandolf KB, Burse RL, Goldman RF. Role of physical fitness in heat acclimatisation, decay and reinduction. Ergonomics. 1977;20(4):399408. doi:10.1080/00140137708931642

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Senay LC, Mitchell D, Wyndham CH. Acclimatization in a hot, humid environment: body fluid adjustments. J Appl Physiol. 1976;40(5):786796. PubMed ID: 931907 doi:10.1152/jappl.1976.40.5.786

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Sawka MN, Wenger CB, Pandolf KB. Thermoregulatory responses to acute exercise-heat stress and heat acclimation. In: Comprehensive Physiology. New York: John Wiley & Sons, Inc; 2010.

    • Search Google Scholar
    • Export Citation
  • 29.

    Aubry A, Hausswirth C, Louis J, Coutts AJ, Le Meur Y. Functional overreaching: the key to peak performance during the taper? Med Sci Sports Exerc. 2014;46(9):17691777. PubMed ID: 25134000 doi:10.1249/MSS.0000000000000301

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3834 1479 94
Full Text Views 140 17 6
PDF Downloads 114 25 5