Effect of Heavy Resisted Sled Sprint Training During the Competitive Season on Sprint and Change-of-Direction Performance in Professional Soccer Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: Resisted sled sprinting (RSS) is an effective tool for improving sprint performance over short distances, but the effect on change-of-direction (COD) performance is largely unknown. The present study investigated the effect of heavy RSS training during the competitive season on sprint and COD performance in professional soccer players. Methods: Over 6 wk in-season, an RSS training group (n = 6) performed RSS at a sled load of 30% body mass for a total program running distance of 800 m, whereas an unresisted sprint (URS) training group (n = 7) performed the same distance of unresisted sprinting. A 20-m maximal sprint with split times measured at 5, 10, and 20 m and the sprint 9-3-6-3-9 m with 180° turns COD test were performed before and after the intervention. Results: Sprint performance (mean, 95% confidence limits, qualitative inference) was improved in both groups over 5 m (URS, 5.1%, −2.4 to 12.7, likely moderate; RSS, 5.4%, 0.5–10.4, likely moderate), 10 m (URS, 3.9%, −0.3 to 8.1, very likely moderate; RSS, 5.0%, 1.8–8.0, very likely large), and 20 m (URS, 2.0%, −0.6 to 4.5, likely moderate; RSS, 3.0%, 1.7–4.4, very likely moderate). COD was improved in both groups (URS, 3.7%, 2.2–5.2, most likely large; RSS, 3.3%, 1.6–5.0, most likely moderate). Between-groups differences were unclear. Conclusion: Heavy RSS and URS training matched for running distance were similarly effective at improving sprint and COD performance in professional soccer players when performed in the competitive phase of the season.

McMorrow and Ditroilo are with the School of Public Health, Physiotherapy and Sports Science, Inst for Sport and Health, University College Dublin, Dublin, Ireland. Egan is with the School of Health and Human Performance, Dublin City University, Dublin, Ireland.

Egan (brendan.egan@dcu.ie) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Little TWilliams AG. Specificity of acceleration, maximum speed, and agility in professional soccer players. J Strength Cond Res. 2005;19:7678. PubMed ID: 15705049 doi:10.1519/14253.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Petrakos GMorin JBEgan B. Resisted sled sprint training to improve sprint performance: a systematic review. Sports Med. 2016;46:381400. PubMed ID: 26553497 doi:10.1007/s40279-015-0422-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Young WB. Transfer of strength and power training to sports performance. Int J Sports Physiol Perform. 2006;1:7483. PubMed ID: 19114741 doi:10.1123/ijspp.1.2.74

  • 4.

    Cronin JHansen KKawamori NMcNair P. Effects of weighted vests and sled towing on sprint kinematics. Sports Biomech. 2008;7:160172. PubMed ID: 18610770 doi:10.1080/14763140701841381

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Okkonen OHakkinen K. Biomechanical comparison between sprint start, sled pulling, and selected squat-type exercises. J Strength Cond Res. 2013;27:26622673. PubMed ID: 23760361 doi:10.1519/JSC.0b013e31829992b0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kawamori NNewton RNosaka K. Effects of weighted sled towing on ground reaction force during the acceleration phase of sprint running. J Sports Sci. 2014;32:11391145. PubMed ID: 24576071 doi:10.1080/02640414.2014.886129

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Morin JBEdouard PSamozino P. Technical ability of force application as a determinant factor of sprint performance. Med Sci Sports Exerc. 2011;43:16801688. PubMed ID: 21364480 doi:10.1249/MSS.0b013e318216ea37

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kawamori NNosaka KNewton RU. Relationships between ground reaction impulse and sprint acceleration performance in team sport athletes. J Strength Cond Res. 2013;27:568573. PubMed ID: 22531618 doi:10.1519/JSC.0b013e318257805a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Rabita GDorel SSlawinski Jet al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25:583594. PubMed ID: 25640466 doi:10.1111/sms.12389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hrysomallis C. The effectiveness of resisted movement training on sprinting and jumping performance. J Strength Cond Res. 2012;26:299306. PubMed ID: 22158137 doi:10.1519/JSC.0b013e3182185186

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Alcaraz PECarlos-Vivas JOponjuru BOMartinez-Rodriguez A. The effectiveness of resisted sled training (RST) for sprint performance: a systematic review and meta-analysis. Sports Med. 2018;48(9):21432165.doi:10.1007/s40279-018-0947-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Delecluse CVan Coppenolle HWillems EVan Leemputte MDiels RGoris M. Influence of high-resistance and high-velocity training on sprint performance. Med Sci Sports Exerc. 1995;27:12031209. PubMed ID: 7476066 doi:10.1249/00005768-199508000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Zafeiridis ASaraslanidis PManou VIoakimidis PDipla KKellis S. The effects of resisted sled-pulling sprint training on acceleration and maximum speed performance. J Sports Med Phys Fitness. 2005;45:284290. PubMed ID: 16230978

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Harrison AJBourke G. The effect of resisted sprint training on speed and strength performance in male rugby players. J Strength Cond Res. 2009;23:275283. PubMed ID: 19125101 doi:10.1519/JSC.0b013e318196b81f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lockie RGMurphy AJSchultz ABKnight TJJanse de Jonge XA. The effects of different speed training protocols on sprint acceleration kinematics and muscle strength and power in field sport athletes. J Strength Cond Res. 2012;26:15391550. PubMed ID: 21912294 doi:10.1519/JSC.0b013e318234e8a0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    West DJCunningham DJBracken RMet al. Effects of resisted sprint training on acceleration in professional rugby union players. J Strength Cond Res. 2013;27:10141018. PubMed ID: 22692118 doi:10.1519/JSC.0b013e3182606cff

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Alcaraz PEElvira JLPalao JM. Kinematic, strength, and stiffness adaptations after a short-term sled towing training in athletes. Scand J Med Sci Sports. 2014;24:279290. PubMed ID: 22672673 doi:10.1111/j.1600-0838.2012.01488.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bachero-Mena BGonzalez-Badillo JJ. Effects of resisted sprint training on acceleration with three different loads accounting for 5, 12.5, and 20% of body mass. J Strength Cond Res. 2014;28:29542960. PubMed ID: 24736770 doi:10.1519/jsc.0000000000000492

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kawamori NNewton RUHori NNosaka K. Effects of weighted sled towing with heavy versus light load on sprint acceleration ability. J Strength Cond Res. 2014;28:27382745. PubMed ID: 23539079 doi:10.1519/JSC.0b013e3182915ed4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Morin JBPetrakos GJimenez-Reyes PBrown SRSamozino PCross MR. Very-heavy sled training for improving horizontal-force output in soccer players. Int J Sports Physiol Perform. 2017;12:840844. PubMed ID: 27834560 doi:10.1123/ijspp.2016-0444

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cross MRLahti JBrown SRet al. Training at maximal power in resisted sprinting: optimal load determination methodology and pilot results in team sport athletes. PLoS One. 2018;13:e0195477. PubMed ID: 29641589 doi:10.1371/journal.pone.0195477

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Peterson MDAlvar BARhea MR. The contribution of maximal force production to explosive movement among young collegiate athletes. J Strength Cond Res. 2006;20:867873. PubMed ID: 17194245 doi:10.1519/r-18695.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Castillo-Rodriguez AFernandez-Garcia JCChinchilla-Minguet JLCarnero EA. Relationship between muscular strength and sprints with changes of direction. J Strength Cond Res. 2012;26:725732. PubMed ID: 22289697 doi:10.1519/JSC.0b013e31822602db

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Shalfawi SAHaugen TJakobsen TAEnoksen ETonnessen E. The effect of combined resisted agility and repeated sprint training vs. strength training on female elite soccer players. J Strength Cond Res. 2013;27:29662972. PubMed ID: 23442286 doi:10.1519/JSC.0b013e31828c2889

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    de Hoyo MGonzalo-Skok OSanudo Bet al. Comparative effects of in-season full-back squat, resisted sprint training, and plyometric training on explosive performance in U-19 elite soccer players. J Strength Cond Res. 2016;30:368377. doi:10.1519/jsc.0000000000001094

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Gil SBarroso RCrivoi do Carmo Eet al. Effects of resisted sprint training on sprinting ability and change of direction speed in professional soccer players. J Sports Sci. 2018;36:19231929. PubMed ID: 29334309 doi:10.1080/02640414.2018.1426346

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Sporis GJukic IMilanovic LVucetic V. Reliability and factorial validity of agility tests for soccer players. J Strength Cond Res. 2010;24:679686. PubMed ID: 20145571 doi:10.1519/JSC.0b013e3181c4d324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Sainani KL. The problem with “magnitude-based inference”. Med Sci Sports Exerc. 2018;50:21662176. PubMed ID: 29683920 doi:10.1249/mss.0000000000001645

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hopkins WG. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a p value. Sportscience. 2007;11:1620.

    • Search Google Scholar
    • Export Citation
  • 31.

    Hopkins WG. Spreadsheets for analysis of controlled trials, crossovers and time series. Sportscience. 2017;21:14.

  • 32.

    Petrakos GTynan NCVallely-Farrell AMKiely CBoudhar AEgan B. Reliability of the maximal resisted sprint load test and relationships with performance measures and anthropometric profile in female field sport athletes. J Strength Cond Res. 2019;33(6):17031713. PubMed ID: 28902107 doi:10.1519/jsc.0000000000002228

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Linthorne NPCooper JE. Effect of the coefficient of friction of a running surface on sprint time in a sled-towing exercise. Sports Biomech. 2013;12:175185. PubMed ID: 23898689 doi:10.1080/14763141.2012.726638

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Christensen PMShirai YRitz CNordsborg NB. Caffeine and bicarbonate for speed. A meta-analysis of legal supplements potential for improving intense endurance exercise performance. Front Physiol. 2017;8:240. PubMed ID: 28536531 doi:10.3389/fphys.2017.00240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Paul DJGabbett TJNassis GP. Agility in team sports: testing, training and factors affecting performance. Sports Med. 2016;46:421442. PubMed ID: 26670456 doi:10.1007/s40279-015-0428-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Young WBMcDowell MHScarlett BJ. Specificity of sprint and agility training methods. J Strength Cond Res. 2001;15:315319. PubMed ID: 11710657.

  • 37.

    Marrier BRobineau JPiscione Jet al. Supercompensation kinetics of physical qualities during a taper in team-sport athletes. Int J Sports Physiol Perform. 2017;12:11631169. PubMed ID: 28121198 doi:10.1123/ijspp.2016-0607

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Bourdon PCCardinale MMurray Aet al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12:S2161S2170. PubMed ID: 28463642 doi:10.1123/ijspp.2017-0208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Lockie RGMurphy AJScott BRJanse de Jonge XA. Quantifying session ratings of perceived exertion for field-based speed training methods in team sport athletes. J Strength Cond Res. 2012;26:27212728. PubMed ID: 22130404 doi:10.1519/JSC.0b013e3182429b0b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 251 251 197
Full Text Views 17 17 6
PDF Downloads 8 8 4
Altmetric Badge
PubMed
Google Scholar