Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: The influence of preceding load and future perceived wellness of professional soccer players is unexamined. This paper simultaneously evaluates the external load (EL) and internal load (IL) for different time frames in combination with presession wellness to predict future perceived wellness using machine learning techniques. Methods: Training and match data were collected from a professional soccer team. The EL was measured using global positioning system technology and accelerometry. The IL was obtained using the rating of perceived exertion multiplied by duration. Predictive models were constructed using gradient-boosted regression trees (GBRT) and one naive baseline method. The individual predictions of future wellness items (ie, fatigue, sleep quality, general muscle soreness, stress levels, and mood) were based on a set of EL and IL indicators in combination with presession wellness. The EL and IL were computed for acute and cumulative time frames. The GBRT model’s performance on predicting the reported future wellness was compared with the naive baseline’s performance by means of absolute prediction error and effect size. Results: The GBRT model outperformed the baseline for the wellness items such as fatigue, general muscle soreness, stress levels, and mood. In addition, only the combination of EL, IL, and presession perceived wellness resulted in nontrivial effects for predicting future wellness. Including the cumulative load did not improve the predictive performances. Conclusions: The findings may indicate the importance of including both acute load and presession perceived wellness in a broad monitoring approach in professional soccer.

Op De Beéck and Davis are with the Dept of Computer Science, and Jaspers and Helsen, the Movement Control & Neuroplasticity Research Group, Dept of Movement Sciences, KU Leuven, Leuven, Belgium. Brink and Frencken are with the Center for Human Movement Sciences, University Medical Center, University of Groningen, Groningen, the Netherlands. Staes is with the Musculoskeletal Rehabilitation Research Group, Dept of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.

Jaspers (arne.jaspers@kuleuven.be) is corresponding author.
  • 1.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(suppl 2):139–147. doi:10.1007/s40279-014-0253-z

  • 2.

    Bourdon PC, Cardinale M, Murray A, et al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12(suppl 2):S2-161–S2-170. doi:10.1123/IJSPP.2017-0208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Buchheit M, Racinais S, Bilsborough JC, et al. Monitoring fitness, fatigue and running performance during a pre-season training camp in elite football players. J Sci Med Sport. 2013;16(6):550–555. PubMed ID: 23332540 doi:10.1016/j.jsams.2012.12.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Buchheit M, Cholley Y, Lambert P. Psychometric and physiological responses to a preseason competitive camp in the heat with a 6-hour time difference in elite soccer players. Int J Sports Physiol Perform. 2016;11(2):176–181. PubMed ID: 26182437 doi:10.1123/ijspp.2015-0135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Fessi MS, Nouira S, Dellal A, Owen A, Elloumi M, Moalla W. Changes of the psychophysical state and feeling of wellness of professional soccer players during pre-season and in-season periods. Res Sports Med. 2016;24(4):375–386. PubMed ID: 27574867 doi:10.1080/15438627.2016.1222278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Moalla W, Fessi MS, Farhat F, Nouira S, Wong DP, Dupont G. Relationship between daily training load and psychometric status of professional soccer players. Res Sports Med. 2016;24(4):387–394. PubMed ID: 27712094 doi:10.1080/15438627.2016.1239579

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Thorpe RT, Strudwick AJ, Buchheit M, Atkinson G, Drust B, Gregson W. Monitoring fatigue during the in-season competitive phase in elite soccer players. Int J Sports Physiol Perform. 2015;10(8):958–964. PubMed ID: 25710257 doi:10.1123/ijspp.2015-0004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Thorpe RT, Strudwick AJ, Buchheit M, Atkinson G, Drust B, Gregson W. The influence of changes in acute training load on daily sensitivity of morning-measured fatigue variables in elite soccer players. Int J Sports Physiol Perform. 2017;12(suppl 2):S2-107–S2-113. doi:10.1123/ijspp.2016-0433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Laux P, Krumm B, Diers M, Flor H. Recovery-stress balance and injury risk in professional football players: a prospective study. J Sports Sci. 2015;33(20):2140–2148. PubMed ID: 26168148 doi:10.1080/02640414.2015.1064538

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Saw AE, Main LC, Gastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50(5):281–291. PubMed ID: 26423706 doi:10.1136/bjsports-2015-094758

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):1042–1047. PubMed ID: 15179175 doi:10.1249/01.MSS.0000128199.23901.2F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gallo TF, Cormack SJ, Gabbett TJ, Lorenzen CH. Pre-training perceived wellness impacts training output in Australian football players. J Sports Sci. 2016;34(15):1445–1451. PubMed ID: 26637525 doi:10.1080/02640414.2015.1119295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Govus AD, Coutts A, Duffield R, Murray A, Fullagar H. Relationship between pretraining subjective wellness measures, Player Load, and rating-of-perceived-exertion training load in American college football. Int J Sports Physiol Perform. 2018;13(1):95–101. PubMed ID: 28488913 doi:10.1123/ijspp.2016-0714

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Malone S, Owen A, Newton M, et al. Wellbeing perception and the impact on external training output among elite soccer players. J Sci Med Sport. 2018;21(1):29–34. PubMed ID: 28442275 doi:10.1016/j.jsams.2017.03.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Impellizzeri FM, Rampinini E, Marcora SM. Physiological assessment of aerobic training in soccer. J Sports Sci. 2005;23(6):583–592. PubMed ID: 16195007 doi:10.1080/02640410400021278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bishop C. Pattern Recognition and Machine Learning (Information Science and Statistics). 2nd ed. New York, NY: Springer; 2007.

  • 17.

    Scott MT, Scott TJ, Kelly VG. The validity and reliability of global positioning systems in team sport: a brief review. J Strength Cond Res. 2016;30(5):1470–1490. PubMed ID: 26439776 doi:10.1519/JSC.0000000000001221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Malone JJ, Lovell R, Varley MC, Coutts AJ. Unpacking the black box: applications and considerations for using GPS devices in sport. Int J Sports Physiol Perform. 2017;12(suppl 2):S2-18–S2-26. doi:10.1123/ijspp.2016-0236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Varley MC, Jaspers A, Helsen WF, Malone JJ. Methodological considerations when quantifying high-intensity efforts in team sport using global positioning system technology. Int J Sports Physiol Perform. 2017;12(8):1059–1068. PubMed ID: 28051343 doi:10.1123/ijspp.2016-0534

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Barrett S, Midgley A, Lovell R. PlayerLoad™: reliability, convergent validity, and influence of unit position during treadmill running. Int J Sports Physiol Perform. 2014;9(6):945–952. PubMed ID: 24622625 doi:10.1123/ijspp.2013-0418

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jaspers A, Kuyvenhoven JP, Staes F, Frencken WGP, Helsen WF, Brink MS. Examination of the external and internal load indicators’ association with overuse injuries in professional soccer players. J Sci Med Sport. 2018;21(6):579–585. PubMed ID: 29079295 doi:10.1016/j.jsams.2017.10.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109–115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50(5):273–280. PubMed ID: 26758673 doi:10.1136/bjsports-2015-095788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29(5):1189–1232. doi:10.1214/aos/1013203451

  • 25.

    Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–2830.

  • 26.

    Domingos P. A unified bias-variance decomposition. In: Brodley CE, Danyluk AP, eds. Proceedings of Seventeenth International Conference on Machine Learning (ICML) 2000, Stanford University, Stanford, CA, USA, June 29–July 2, 2000. Burlington, MA: Morgan Kaufmann; 231–238.

    • Export Citation
  • 27.

    Hopkins WG. A scale of magnitudes for effect statistics. In: A New View of Statistics. Sportsci.org:2002;502. http://www.sportsci.org/resource/stats/effectmag.html. Accessed November 13, 2017.

    • Search Google Scholar
    • Export Citation
  • 28.

    Engels JM, Diehr P. Imputation of missing longitudinal data: a comparison of methods. J Clin Epidemiol. 2003;56(10):968–976. PubMed ID: 14568628 doi:10.1016/S0895-4356(03)00170-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Abbott W, Brownlee TE, Harper LD, Naughton RJ, Clifford T. The independent effects of match location, match result and the quality of opposition on subjective wellbeing in under 23 soccer players: a case study. Res Sports Med. 2018;26(3):262–275. PubMed ID: 29502448 doi:10.1080/15438627.2018.1447476

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Fessi MS, Moalla W. Postmatch perceived exertion, feeling, and wellness in professional soccer players. Int J Sports Physiol Perform. 2018;13(5):631–637. PubMed ID: 29345537 doi:10.1123/ijspp.2017-0725

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    De’ath G. Boosted trees for ecological modeling and prediction. Ecology. 2007;88(1):243–251. doi:10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Saw AE, Kellmann M, Main LC, Gastin PB. Athlete self-report measures in research and practice: considerations for the discerning reader and fastidious practitioner. Int J Sports Physiol Perform. 2017;12(suppl 2):S2-127–S2-135. doi:10.1123/ijspp.2016-0395

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Auret L, Aldrich C. Interpretation of nonlinear relationships between process variables by use of random forests. Miner Eng. 2012;35:27–42. doi:10.1016/j.mineng.2012.05.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Bittencourt NFN, Meeuwisse WH, Mendonça LD, Nettel-Aguirre A, Ocarino JM, Fonseca ST. Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition—narrative review and new concept. Br J Sports Med. 2016;50(21):1309–1314. PubMed ID: 27445362 doi:10.1136/bjsports-2015-095850

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Windt J, Zumbo BD, Sporer B, MacDonald K, Gabbett TJ. Why do workload spikes cause injuries, and which athletes are at higher risk? Mediators and moderators in workload–injury investigations. Br J Sports Med. 2017;51(13):993–994. PubMed ID: 28274916 doi:10.1136/bjsports-2016-097255

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 175 175 28
Full Text Views 41 41 13
PDF Downloads 24 24 11