Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: The influence of preceding load and future perceived wellness of professional soccer players is unexamined. This paper simultaneously evaluates the external load (EL) and internal load (IL) for different time frames in combination with presession wellness to predict future perceived wellness using machine learning techniques. Methods: Training and match data were collected from a professional soccer team. The EL was measured using global positioning system technology and accelerometry. The IL was obtained using the rating of perceived exertion multiplied by duration. Predictive models were constructed using gradient-boosted regression trees (GBRT) and one naive baseline method. The individual predictions of future wellness items (ie, fatigue, sleep quality, general muscle soreness, stress levels, and mood) were based on a set of EL and IL indicators in combination with presession wellness. The EL and IL were computed for acute and cumulative time frames. The GBRT model’s performance on predicting the reported future wellness was compared with the naive baseline’s performance by means of absolute prediction error and effect size. Results: The GBRT model outperformed the baseline for the wellness items such as fatigue, general muscle soreness, stress levels, and mood. In addition, only the combination of EL, IL, and presession perceived wellness resulted in nontrivial effects for predicting future wellness. Including the cumulative load did not improve the predictive performances. Conclusions: The findings may indicate the importance of including both acute load and presession perceived wellness in a broad monitoring approach in professional soccer.

Op De Beéck and Davis are with the Dept of Computer Science, and Jaspers and Helsen, the Movement Control & Neuroplasticity Research Group, Dept of Movement Sciences, KU Leuven, Leuven, Belgium. Brink and Frencken are with the Center for Human Movement Sciences, University Medical Center, University of Groningen, Groningen, the Netherlands. Staes is with the Musculoskeletal Rehabilitation Research Group, Dept of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.

Jaspers (arne.jaspers@kuleuven.be) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(suppl 2):139147. doi:10.1007/s40279-014-0253-z

  • 2.

    Bourdon PCCardinale MMurray Aet al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12(suppl 2):S2-161S2-170. doi:10.1123/IJSPP.2017-0208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Buchheit MRacinais SBilsborough JCet al. Monitoring fitness, fatigue and running performance during a pre-season training camp in elite football players. J Sci Med Sport. 2013;16(6):550555. PubMed ID: 23332540 doi:10.1016/j.jsams.2012.12.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Buchheit MCholley YLambert P. Psychometric and physiological responses to a preseason competitive camp in the heat with a 6-hour time difference in elite soccer players. Int J Sports Physiol Perform. 2016;11(2):176181. PubMed ID: 26182437 doi:10.1123/ijspp.2015-0135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Fessi MSNouira SDellal AOwen AElloumi MMoalla W. Changes of the psychophysical state and feeling of wellness of professional soccer players during pre-season and in-season periods. Res Sports Med. 2016;24(4):375386. PubMed ID: 27574867 doi:10.1080/15438627.2016.1222278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Moalla WFessi MSFarhat FNouira SWong DPDupont G. Relationship between daily training load and psychometric status of professional soccer players. Res Sports Med. 2016;24(4):387394. PubMed ID: 27712094 doi:10.1080/15438627.2016.1239579

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Thorpe RTStrudwick AJBuchheit MAtkinson GDrust BGregson W. Monitoring fatigue during the in-season competitive phase in elite soccer players. Int J Sports Physiol Perform. 2015;10(8):958964. PubMed ID: 25710257 doi:10.1123/ijspp.2015-0004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Thorpe RTStrudwick AJBuchheit MAtkinson GDrust BGregson W. The influence of changes in acute training load on daily sensitivity of morning-measured fatigue variables in elite soccer players. Int J Sports Physiol Perform. 2017;12(suppl 2):S2-107S2-113. doi:10.1123/ijspp.2016-0433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Laux PKrumm BDiers MFlor H. Recovery-stress balance and injury risk in professional football players: a prospective study. J Sports Sci. 2015;33(20):21402148. PubMed ID: 26168148 doi:10.1080/02640414.2015.1064538

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Saw AEMain LCGastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50(5):281291. PubMed ID: 26423706 doi:10.1136/bjsports-2015-094758

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Impellizzeri FMRampinini ECoutts AJSassi AMarcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):10421047. PubMed ID: 15179175 doi:10.1249/01.MSS.0000128199.23901.2F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gallo TFCormack SJGabbett TJLorenzen CH. Pre-training perceived wellness impacts training output in Australian football players. J Sports Sci. 2016;34(15):14451451. PubMed ID: 26637525 doi:10.1080/02640414.2015.1119295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Govus ADCoutts ADuffield RMurray AFullagar H. Relationship between pretraining subjective wellness measures, Player Load, and rating-of-perceived-exertion training load in American college football. Int J Sports Physiol Perform. 2018;13(1):95101. PubMed ID: 28488913 doi:10.1123/ijspp.2016-0714

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Malone SOwen ANewton Met al. Wellbeing perception and the impact on external training output among elite soccer players. J Sci Med Sport. 2018;21(1):2934. PubMed ID: 28442275 doi:10.1016/j.jsams.2017.03.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Impellizzeri FMRampinini EMarcora SM. Physiological assessment of aerobic training in soccer. J Sports Sci. 2005;23(6):583592. PubMed ID: 16195007 doi:10.1080/02640410400021278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bishop C. Pattern Recognition and Machine Learning (Information Science and Statistics). 2nd ed. New York, NY: Springer; 2007.

  • 17.

    Scott MTScott TJKelly VG. The validity and reliability of global positioning systems in team sport: a brief review. J Strength Cond Res. 2016;30(5):14701490. PubMed ID: 26439776 doi:10.1519/JSC.0000000000001221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Malone JJLovell RVarley MCCoutts AJ. Unpacking the black box: applications and considerations for using GPS devices in sport. Int J Sports Physiol Perform. 2017;12(suppl 2):S2-18S2-26. doi:10.1123/ijspp.2016-0236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Varley MCJaspers AHelsen WFMalone JJ. Methodological considerations when quantifying high-intensity efforts in team sport using global positioning system technology. Int J Sports Physiol Perform. 2017;12(8):10591068. PubMed ID: 28051343 doi:10.1123/ijspp.2016-0534

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Barrett SMidgley ALovell R. PlayerLoad™: reliability, convergent validity, and influence of unit position during treadmill running. Int J Sports Physiol Perform. 2014;9(6):945952. PubMed ID: 24622625 doi:10.1123/ijspp.2013-0418

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jaspers AKuyvenhoven JPStaes FFrencken WGPHelsen WFBrink MS. Examination of the external and internal load indicators’ association with overuse injuries in professional soccer players. J Sci Med Sport. 2018;21(6):579585. PubMed ID: 29079295 doi:10.1016/j.jsams.2017.10.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Foster CFlorhaug JAFranklin Jet al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50(5):273280. PubMed ID: 26758673 doi:10.1136/bjsports-2015-095788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29(5):11891232. doi:10.1214/aos/1013203451

  • 25.

    Pedregosa FVaroquaux GGramfort Aet al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:28252830.

  • 26.

    Domingos P. A unified bias-variance decomposition. In: Brodley CEDanyluk AP eds. Proceedings of Seventeenth International Conference on Machine Learning (ICML) 2000Stanford University Stanford CA USA June 29–July 2 2000. Burlington MA: Morgan Kaufmann; 231238.

    • Export Citation
  • 27.

    Hopkins WG. A scale of magnitudes for effect statistics. In: A New View of Statistics. Sportsci.org:2002;502. http://www.sportsci.org/resource/stats/effectmag.html. Accessed November 13 2017.

    • Search Google Scholar
    • Export Citation
  • 28.

    Engels JMDiehr P. Imputation of missing longitudinal data: a comparison of methods. J Clin Epidemiol. 2003;56(10):968976. PubMed ID: 14568628 doi:10.1016/S0895-4356(03)00170-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Abbott WBrownlee TEHarper LDNaughton RJClifford T. The independent effects of match location, match result and the quality of opposition on subjective wellbeing in under 23 soccer players: a case study. Res Sports Med. 2018;26(3):262275. PubMed ID: 29502448 doi:10.1080/15438627.2018.1447476

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Fessi MSMoalla W. Postmatch perceived exertion, feeling, and wellness in professional soccer players. Int J Sports Physiol Perform. 2018;13(5):631637. PubMed ID: 29345537 doi:10.1123/ijspp.2017-0725

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    De’ath G. Boosted trees for ecological modeling and prediction. Ecology. 2007;88(1):243251. doi:10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Saw AEKellmann MMain LCGastin PB. Athlete self-report measures in research and practice: considerations for the discerning reader and fastidious practitioner. Int J Sports Physiol Perform. 2017;12(suppl 2):S2-127S2-135. doi:10.1123/ijspp.2016-0395

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Auret LAldrich C. Interpretation of nonlinear relationships between process variables by use of random forests. Miner Eng. 2012;35:2742. doi:10.1016/j.mineng.2012.05.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Bittencourt NFNMeeuwisse WHMendonça LDNettel-Aguirre AOcarino JMFonseca ST. Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition—narrative review and new concept. Br J Sports Med. 2016;50(21):13091314. PubMed ID: 27445362 doi:10.1136/bjsports-2015-095850

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Windt JZumbo BDSporer BMacDonald KGabbett TJ. Why do workload spikes cause injuries, and which athletes are at higher risk? Mediators and moderators in workload–injury investigations. Br J Sports Med. 2017;51(13):993994. PubMed ID: 28274916 doi:10.1136/bjsports-2016-097255

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 157 157 48
Full Text Views 32 32 5
PDF Downloads 14 14 1
Altmetric Badge
PubMed
Google Scholar
Cited By