The Effects of Leucine-Enriched Branched-Chain Amino Acid Supplementation on Recovery After High-Intensity Resistance Exercise

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Context: Of the 3 branched-chain amino acids (BCAA), leucine has arguably received the most attribution for the role of BCAA supplementation in alleviating symptoms of exercise-induced muscle damage and facilitation of acute performance recovery. Purpose: To examine whether enrichment of a standard BCAA supplement with additional leucine or a standalone leucine (LEU) supplement differentially affects exercise-induced muscle damage and performance recovery compared with a standard BCAA supplement. Methods: A total of 22 recreationally active male and female subjects were recruited and assigned to consume a BCAA, leucine-enriched BCAA (LBCAA), or LEU supplement for 11 d. On the eighth day, subjects performed eccentric-based resistance exercise (ECRE). Lower-body mean average and peak power, plasma creatine kinase, soreness, and pain threshold were measured before and 24, 48, and 72 h after ECRE. Results: LEU showed decreased mean average power (P = .02) and mean peak power (P = .01) from baseline to 48 h post-ECRE, whereas LBCAA and BCAA only trended toward a reduction at 24 hours post-ECRE. At 48 h post-ECRE, BCAA showed greater recovery of mean peak power than LEU (P = .04). At 24 h post-ECRE, LEU demonstrated a greater increase in plasma creatine kinase from baseline than BCAA (P = .04). Area under the curve for creatine kinase was greater in LEU than BCAA (P = .02), whereas BCAA and LBCAA did not differ. Only LEU demonstrated increased soreness during rest and under muscular tension at 24 and 48 h post-ECRE (P < .05). Conclusions: LBCAA failed to afford any advantages over a standard BCAA supplement for postexercise muscle recovery, whereas a LEU supplement was comparatively ineffective.

Osmond, Directo, Juache, Saralegui, Wong, and Jo are with the Human Performance Research Laboratory, Dept of Kinesiology & Health Promotion, and Elam, the Dept of Human Nutrition & Food Science, California State Polytechnic University Pomona, Pomona, CA. Kreipke is with Dept of Nutrition, Food, & Exercise Sciences, Florida State University, Tallahassee, FL. Wildman is with the Nutrition and Food Sciences Dept, Texas Woman’s University, Denton, TX.

Jo (ejo@cpp.edu) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Proske UMorgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001;537(pt 2):333345. PubMed ID: 11731568 doi:10.1111/j.1469-7793.2001.00333.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Howatson GHoad MGoodall STallent JBell PGFrench DN. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J Int Soc Sports Nutr. 2012;9:20. PubMed ID: 22569039 doi:10.1186/1550-2783-9-20

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Howatson Gvan Someren KA. The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008;38(6):483503. PubMed ID: 18489195 doi:10.2165/00007256-200838060-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kirby TJTriplett NTHaines TLSkinner JWFairbrother KRMcBride JM. Effect of leucine supplementation on indices of muscle damage following drop jumps and resistance exercise. Amino Acids. 2012;42(5):19871996. PubMed ID: 21562819 doi:10.1007/s00726-011-0928-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Nosaka KSacco PMawatari K. Effects of amino acid supplementation on muscle soreness and damage. Int J Sport Nutr Exerc Metab. 2006;16(6):620635. PubMed ID: 17342883 doi:10.1123/ijsnem.16.6.620

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    da Luz CRNicastro HZanchi NEChaves DFLancha AH. Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans. J Int Soc Sports Nutr. 2011;8:23. PubMed ID: 22168756 doi:10.1186/1550-2783-8-23

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Jackman SRWitard OCJeukendrup AETipton KD. Branched-chain amino acid ingestion can ameliorate soreness from eccentric exercise. Med Sci Sports Exerc. 2010;42(5):962970. PubMed ID: 19997002 doi:10.1249/MSS.0b013e3181c1b798

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Matsumoto KKoba THamada KSakurai MHiguchi TMiyata H. Branched-chain amino acid supplementation attenuates muscle soreness, muscle damage and inflammation during an intensive training program. J Sports Med Phys Fitness. 2009;49(4):424431. PubMed ID: 20087302

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Shimomura YInaguma AWatanabe Set al. Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness. Int J Sport Nutr Exerc Metab. 2010;20(3):236244. PubMed ID: 20601741 doi:10.1123/ijsnem.20.3.236

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Blomstrand EEliasson JKarlsson HKKöhnke R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr. 2006;136(suppl 1):269S273S. doi:10.1093/jn/136.1.269S

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Atherton PJSmith KEtheridge TRankin DRennie MJ. Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids. 2010;38(5):15331539. PubMed ID: 19882215 doi:10.1007/s00726-009-0377-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Buse MGReid SS. Leucine.A possible regulator of protein turnover in muscle. J Clin Invest. 1975;56(5):12501261. PubMed ID: 1237498 doi:10.1172/JCI108201

  • 13.

    Garlick PJ. The role of leucine in the regulation of protein metabolism. J Nutr. 2005;135(suppl 6):1553S1556S. doi:10.1093/jn/135.6.1553S

  • 14.

    Stock MSYoung JCGolding LAet al. The effects of adding leucine to pre and postexercise carbohydrate beverages on acute muscle recovery from resistance training. J Strength Cond Res. 2010;24(8):22112219. PubMed ID: 20634736 doi:10.1519/JSC.0b013e3181dc3a10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kato HSuzuki HMimura Met al. Leucine-enriched essential amino acids attenuate muscle soreness and improve muscle protein synthesis after eccentric contractions in rats. Amino Acids. 2015;47(6):11931201. PubMed ID: 25772815 doi:10.1007/s00726-015-1946-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Reule CAScholz CSchoen CBrown NSiepelmeyer AAlt WW. Reduced muscular fatigue after a 12-week leucine-rich amino acid supplementation combined with moderate training in elderly: a randomised, placebo-controlled, double-blind trial. BMJ Open Sport Exerc Med. 2016;2(1):e000156. PubMed ID: 28879028 doi:10.1136/bmjsem-2016-000156

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Coombes JSMcNaughton LR. Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. J Sports Med Phys Fitness. 2000;40(3):240246. PubMed ID: 11125767

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kraemer WJAdams KCafarelli Eet al. American College of Sports Medicine position stand.Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;34(2):364380. PubMed ID: 11828249 doi:10.1097/00005768-200202000-00027

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Thompson BJSmith DBJacobson BHet al. The influence of ratio and allometric scaling procedures for normalizing upper body power output in division I collegiate football players. J Strength Cond Res. 2010;24(9):22692273. PubMed ID: 20683356 doi:10.1519/JSC.0b013e3181e4f5bc

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Kinser AMSands WAStone MH. Reliability and validity of a pressure algometer. J Strength Cond Res. 2009;23(1):312314. PubMed ID: 19130648 doi:10.1519/JSC.0b013e31818f051c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Shimomura YMurakami TNakai NNagasaki MHarris RA. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. J Nutr. 2004;134(suppl 6):1583S1587S. doi:10.1093/jn/134.6.1583S

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Katsanos CSKobayashi HSheffield-Moore MAarsland AWolfe RR. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab. 2006;291(2):E381E387. PubMed ID: 16507602 doi:10.1152/ajpendo.00488.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Smith CKruger MJSmith RMMyburgh KH. The inflammatory response to skeletal muscle injury: illuminating complexities. Sports Med. 2008;38(11):947969. PubMed ID: 18937524 doi:10.2165/00007256-200838110-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bassit RASawada LABacurau RFet al. Branched-chain amino acid supplementation and the immune response of long-distance athletes. Nutrition. 2002;18(5):376379. PubMed ID: 11985939 doi:10.1016/S0899-9007(02)00753-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Areta JLHawley JAYe JMChan MHCoffey VG. Increasing leucine concentration stimulates mechanistic target of rapamycin signaling and cell growth in C2C12 skeletal muscle cells. Nutr Res. 2014;34(11):10001007. PubMed ID: 25439029 doi:10.1016/j.nutres.2014.09.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bohé JLow JFWolfe RRRennie MJ. Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J Physiol. 2001;532(pt 2):575579. doi:10.1111/j.1469-7793.2001.0575f.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Elango RChapman KRafii MBall ROPencharz PB. Determination of the tolerable upper intake level of leucine in acute dietary studies in young men. Am J Clin Nutr. 2012;96(4):759767. PubMed ID: 22952178 doi:10.3945/ajcn.111.024471

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Luiking YCDeutz NEMemelink RGVerlaan SWolfe RR. Postprandial muscle protein synthesis is higher after a high whey protein, leucine-enriched supplement than after a dairy-like product in healthy older people: a randomized controlled trial. Nutr J. 2014;13:9. PubMed ID: 24450500 doi:10.1186/1475-2891-13-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Teixeira FJMatias CNMonteiro CPet al. Leucine metabolites do not enhance training-induced performance or muscle thickness. Med Sci Sports Exerc. 2019;51(1):5664. PubMed ID: 30102677 doi:10.1249/MSS.0000000000001754

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Stokes THector AJMorton RWMcGlory CPhillips SM. Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients. 2018;10(2):180. PubMed ID: 29414855 doi:10.3390/nu10020180

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 285 285 213
Full Text Views 25 25 17
PDF Downloads 15 15 11
Altmetric Badge
PubMed
Google Scholar