Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To investigate the existence of faster vs slower recovery profiles in futsal and factors distinguishing them. Methods: 22 male futsal players were evaluated in countermovement jump, 10-m sprint, creatine kinase, total quality of recovery (TQR), and Brunel Mood Scale (fatigue and vigor) before and immediately and 3, 24, and 48 h posttraining. Hierarchical cluster analysis allocated players to different recovery profiles using the area under the curve (AUC) of the percentage differences from baseline. One-way ANOVA compared the time course of each variable and players’ characteristics between clusters. Results: Three clusters were identified and labeled faster recovery (FR), slower physiological recovery (SLphy), and slower perceptual recovery (SLperc). FR presented better AUC in 10-m sprint than SLphy (P = .001) and SLperc (P = .008), as well as better TQR SLphy (P = .018) and SLperc (P = .026). SLperc showed better AUC in countermovement jump than SLphy (P = .014) but presented worse fatigue AUC than SLphy (P = .014) and FR (P = .008). AUC of creatine kinase was worse in SLphy than in FR (P = .001) and SLperc (P < .001). The SLphy players were younger than SLperc players (P = .027), whereas FR were slower 10-m sprinters than SLphy players (P = .003) and SLperc (P = .013) and tended to have higher maximal oxygen consumption than SLphy (effect size =1.13). Conclusion: Different posttraining recovery profiles exist in futsal players, possibly influenced by their physical abilities and age/experience.

Wilke and Wanner are with Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil. Wilke and Duffield are with Sport and Exercise, Faculty of Health, University of Technology Sydney, Sydney, NSW, Australia. Fernandes, Martins, and Lacerda are with the Laboratory of Optimization and Metaheuristic Algorithms, Computer Dept, Center of Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil. Nakamura is with the College of Healthcare Sciences, James Cook University, Townsville, QLD, Australia, and the Dept of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti-Pescara, Italy.

Wilke (carol_wilke@hotmail.com) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Kellmann MBertollo MBosquet Let al. Recovery and performance in sport: consensus statement. Int J Sports Physiol Perform. 2018;13(2):240245. PubMed ID: 29345524 doi:10.1123/ijspp.2017-0759

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Minett GMDuffield R. Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise. Front Physiol. 2014;5:24. PubMed ID: 24550837 doi:10.3389/fphys.2014.00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Silva JRRumpf MCHertzog Met al. Acute and residual soccer match-related fatigue: a systematic review and meta-analysis. Sports Med. 2018;48(3):539583. PubMed ID: 29098658 doi:10.1007/s40279-017-0798-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Johnston RDGabbett TJJenkins DGHulin BT. Influence of physical qualities on post-match fatigue in rugby league players. J Sci Med Sport. 2015;18(2):209213. PubMed ID: 24594214 doi:10.1016/j.jsams.2014.01.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Skein MDuffield RMinett GMSnape AMurphy A. The effect of overnight sleep deprivation after competitive rugby league matches on postmatch physiological and perceptual recovery. Int J Sports Physiol Perform. 2013;8(5):556564. PubMed ID: 23412713 doi:10.1123/ijspp.8.5.556

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Wanner SPWilke CFDuffield R. Nutritional strategies for maximizing recovery from strenuous exercise in the heat: an important role for carbohydrate (sago) supplementation. Temperature. 2016;3(3):366368. PubMed ID: 28352144 doi:10.1080/23328940.2016.1214335

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Nédélec MMcCall ACarling CLegall FBerthoin SDupont G. Recovery in soccer: part I—post-match fatigue and time course of recovery. Sports Med. 2012;42(12):9971015. PubMed ID: 23046224 doi:10.2165/11635270-000000000-00000

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Doeven SHBrink MSKosse SJLemmink KAPM. Postmatch recovery of physical performance and biochemical markers in team ball sports: a systematic review. BMJ Open Sport Exerc Med. 2018;4(1):e000264. PubMed ID: 29527320 doi:10.1136/bmjsem-2017-000264

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Guo QLu XGao Yet al. Cluster analysis: a new approach for identification of underlying risk factors for coronary artery disease in essential hypertensive patients. Sci Rep. 2017;7:43965. PubMed ID: 28266630 doi:10.1038/srep43965

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Shannon W. Cluster Analysis Epidemiology and Medical Statistics. Vol 27. 1st ed. Amsterdam, the Netherlands: Elsevier; 2007:342366.

  • 11.

    Evans KLHughes JWilliams MD. Reduced severity of lumbo-pelvic-hip injuries in professional rugby union players following tailored preventative programmes. J Sci Med Sport. 2018;21(3):274279. PubMed ID: 28797830 doi:10.1016/j.jsams.2017.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Moreira ACosta ECCoutts AJNakamura FYda Silva DAAoki MS. Cold water immersion did not accelerate recovery after a futsal match. Rev Bras Med Esporte. 2015;21:4043. doi:10.1590/1517-86922015210101578

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Tessitore AMeeusen RPagano RBenvenuti CTiberi MCapranica L. Effectiveness of active versus passive recovery strategies after futsal games. J Strength Cond Res. 2008;22(5):14021412. PubMed ID: 18714251 doi:10.1519/JSC.0b013e31817396ac

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Charlot KZongo PLeicht ASHue OGaly O. Intensity, recovery kinetics and well-being indices are not altered during an official FIFA futsal tournament in Oceanian players. J Sports Sci. 2016;34(4):379388. PubMed ID: 26067492 doi:10.1080/02640414.2015.1056822

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Soares-Caldeira LFde Souza EAde Freitas VHde Moraes SMLeicht ASNakamura FY. Effects of additional repeated sprint training during preseason on performance, heart rate variability, and stress symptoms in futsal players: a randomized controlled trial. J Strength Cond Res. 2014;28(10):28152826. PubMed ID: 24662230 doi:10.1519/JSC.0000000000000461

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Foster CDaines EHector LSnyder ACWelsh R. Athletic performance in relation to training load. Wis Med J. 1996;95(6):370374. PubMed ID: 8693756

  • 17.

    Boyd LJBall KAughey RJ. The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform. 2011;6(3):311321. PubMed ID: 21911857 doi:10.1123/ijspp.6.3.311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Edwards S. The Heart Rate Monitor Book. Port Washington, NY: Polar CIC; 1993.

  • 19.

    Howatson GMilak A. Exercise-induced muscle damage following a bout of sport specific repeated sprints. J Strength Cond Res. 2009;23(8):24192424. PubMed ID: 19826279 doi:10.1519/JSC.0b013e3181bac52e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kenttä GHassmén P. Overtraining and recovery. A conceptual model. Sports Med. 1998;26(1):116. PubMed ID: 9739537 doi:10.2165/00007256-199826010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Rohlfs ICPdMRotta TMLuft CDBAndrade AKrebs RJde Carvalho T. A Escala de Humor de Brunel (Brums): instrumento para detecção precoce da síndrome do excesso de treinamento. Rev Bras Med Esporte. 2008;14:176181. doi:10.1590/S1517-86922008000300003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Hopkins WG. A scale of magnitudes for effect statistics 2002. 2002. Retrieved from https://www.sportsci.org/resource/stats/effectmag.html Accessed May 5 2018.

    • Search Google Scholar
    • Export Citation
  • 23.

    Rowell AEAughey RJHopkins WGStewart AMCormack SJ. Identification of sensitive measures of recovery after external load from football match play. Int J Sports Physiol Perform. 2017;12(7):969976. PubMed ID: 27967334 doi:10.1123/ijspp.2016-0522

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    St Clair Gibson ASwart JTucker R. The interaction of psychological and physiological homeostatic drives and role of general control principles in the regulation of physiological systems, exercise and the fatigue process—The Integrative Governor theory. Eur J Sport Sci. 2018;18(1):2536. PubMed ID: 28478704 doi:10.1080/17461391.2017.1321688

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Pimenta EMCoelho DBCruz IRet al. The ACTN3 genotype in soccer players in response to acute eccentric training. Eur J Appl Physiol. 2012;112(4):14951503. PubMed ID: 21842214 doi:10.1007/s00421-011-2109-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Pimenta EMCoelho DBVeneroso CEet al. Effect of ACTN3 gene on strength and endurance in soccer players. J Strength Cond Res. 2013;27(12):32863292. PubMed ID: 23539075 doi:10.1519/JSC.0b013e3182915e66

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Nakamura FYPereira LARabelo FNRamirez-Campillo RLoturco I. Faster futsal players perceive higher training loads and present greater decreases in sprinting speed during the preseason. J Strength Cond Res. 2016;30(6):15531562. PubMed ID: 26562717 doi:10.1519/JSC.0000000000001257

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Doeven SHBrink MSFrencken WGPLemmink KAPM. Impaired player–coach perceptions of exertion and recovery during match congestion. Int J Sports Physiol Perform. 2017;12(9):11511156. PubMed ID: 28095076 doi:10.1123/ijspp.2016-0363

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gallo TCormack SGabbett TWilliams MLorenzen C. Characteristics impacting on session rating of perceived exertion training load in Australian footballers. J Sports Sci. 2015;33(5):467475. PubMed ID: 25113820 doi:10.1080/02640414.2014.947311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 98 98 54
Full Text Views 20 20 10
PDF Downloads 10 10 5
Altmetric Badge
PubMed
Google Scholar