Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To investigate the existence of faster vs slower recovery profiles in futsal and factors distinguishing them. Methods: 22 male futsal players were evaluated in countermovement jump, 10-m sprint, creatine kinase, total quality of recovery (TQR), and Brunel Mood Scale (fatigue and vigor) before and immediately and 3, 24, and 48 h posttraining. Hierarchical cluster analysis allocated players to different recovery profiles using the area under the curve (AUC) of the percentage differences from baseline. One-way ANOVA compared the time course of each variable and players’ characteristics between clusters. Results: Three clusters were identified and labeled faster recovery (FR), slower physiological recovery (SLphy), and slower perceptual recovery (SLperc). FR presented better AUC in 10-m sprint than SLphy (P = .001) and SLperc (P = .008), as well as better TQR SLphy (P = .018) and SLperc (P = .026). SLperc showed better AUC in countermovement jump than SLphy (P = .014) but presented worse fatigue AUC than SLphy (P = .014) and FR (P = .008). AUC of creatine kinase was worse in SLphy than in FR (P = .001) and SLperc (P < .001). The SLphy players were younger than SLperc players (P = .027), whereas FR were slower 10-m sprinters than SLphy players (P = .003) and SLperc (P = .013) and tended to have higher maximal oxygen consumption than SLphy (effect size =1.13). Conclusion: Different posttraining recovery profiles exist in futsal players, possibly influenced by their physical abilities and age/experience.

Wilke and Wanner are with Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil. Wilke and Duffield are with Sport and Exercise, Faculty of Health, University of Technology Sydney, Sydney, NSW, Australia. Fernandes, Martins, and Lacerda are with the Laboratory of Optimization and Metaheuristic Algorithms, Computer Dept, Center of Technological Education of Minas Gerais (CEFET-MG), Belo Horizonte, Brazil. Nakamura is with the College of Healthcare Sciences, James Cook University, Townsville, QLD, Australia, and the Dept of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti-Pescara, Italy.

Wilke (carol_wilke@hotmail.com) is corresponding author.
  • 1.

    Kellmann M, Bertollo M, Bosquet L, et al. Recovery and performance in sport: consensus statement. Int J Sports Physiol Perform. 2018;13(2):240–245. PubMed ID: 29345524 doi:10.1123/ijspp.2017-0759

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Minett GM, Duffield R. Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise. Front Physiol. 2014;5:24. PubMed ID: 24550837 doi:10.3389/fphys.2014.00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Silva JR, Rumpf MC, Hertzog M, et al. Acute and residual soccer match-related fatigue: a systematic review and meta-analysis. Sports Med. 2018;48(3):539–583. PubMed ID: 29098658 doi:10.1007/s40279-017-0798-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Johnston RD, Gabbett TJ, Jenkins DG, Hulin BT. Influence of physical qualities on post-match fatigue in rugby league players. J Sci Med Sport. 2015;18(2):209–213. PubMed ID: 24594214 doi:10.1016/j.jsams.2014.01.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Skein M, Duffield R, Minett GM, Snape A, Murphy A. The effect of overnight sleep deprivation after competitive rugby league matches on postmatch physiological and perceptual recovery. Int J Sports Physiol Perform. 2013;8(5):556–564. PubMed ID: 23412713 doi:10.1123/ijspp.8.5.556

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Wanner SP, Wilke CF, Duffield R. Nutritional strategies for maximizing recovery from strenuous exercise in the heat: an important role for carbohydrate (sago) supplementation. Temperature. 2016;3(3):366–368. PubMed ID: 28352144 doi:10.1080/23328940.2016.1214335

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Nédélec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer: part I—post-match fatigue and time course of recovery. Sports Med. 2012;42(12):997–1015. PubMed ID: 23046224 doi:10.2165/11635270-000000000-00000

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Doeven SH, Brink MS, Kosse SJ, Lemmink KAPM. Postmatch recovery of physical performance and biochemical markers in team ball sports: a systematic review. BMJ Open Sport Exerc Med. 2018;4(1):e000264. PubMed ID: 29527320 doi:10.1136/bmjsem-2017-000264

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Guo Q, Lu X, Gao Y, et al. Cluster analysis: a new approach for identification of underlying risk factors for coronary artery disease in essential hypertensive patients. Sci Rep. 2017;7:43965. PubMed ID: 28266630 doi:10.1038/srep43965

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Shannon W. Cluster Analysis Epidemiology and Medical Statistics. Vol 27. 1st ed. Amsterdam, the Netherlands: Elsevier; 2007:342–366.

  • 11.

    Evans KL, Hughes J, Williams MD. Reduced severity of lumbo-pelvic-hip injuries in professional rugby union players following tailored preventative programmes. J Sci Med Sport. 2018;21(3):274–279. PubMed ID: 28797830 doi:10.1016/j.jsams.2017.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Moreira A, Costa EC, Coutts AJ, Nakamura FY, da Silva DA, Aoki MS. Cold water immersion did not accelerate recovery after a futsal match. Rev Bras Med Esporte. 2015;21:40–43. doi:10.1590/1517-86922015210101578

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Tessitore A, Meeusen R, Pagano R, Benvenuti C, Tiberi M, Capranica L. Effectiveness of active versus passive recovery strategies after futsal games. J Strength Cond Res. 2008;22(5):1402–1412. PubMed ID: 18714251 doi:10.1519/JSC.0b013e31817396ac

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Charlot K, Zongo P, Leicht AS, Hue O, Galy O. Intensity, recovery kinetics and well-being indices are not altered during an official FIFA futsal tournament in Oceanian players. J Sports Sci. 2016;34(4):379–388. PubMed ID: 26067492 doi:10.1080/02640414.2015.1056822

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Soares-Caldeira LF, de Souza EA, de Freitas VH, de Moraes SM, Leicht AS, Nakamura FY. Effects of additional repeated sprint training during preseason on performance, heart rate variability, and stress symptoms in futsal players: a randomized controlled trial. J Strength Cond Res. 2014;28(10):2815–2826. PubMed ID: 24662230 doi:10.1519/JSC.0000000000000461

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Foster C, Daines E, Hector L, Snyder AC, Welsh R. Athletic performance in relation to training load. Wis Med J. 1996;95(6):370–374. PubMed ID: 8693756

  • 17.

    Boyd LJ, Ball K, Aughey RJ. The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform. 2011;6(3):311–321. PubMed ID: 21911857 doi:10.1123/ijspp.6.3.311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Edwards S. The Heart Rate Monitor Book. Port Washington, NY: Polar CIC; 1993.

  • 19.

    Howatson G, Milak A. Exercise-induced muscle damage following a bout of sport specific repeated sprints. J Strength Cond Res. 2009;23(8):2419–2424. PubMed ID: 19826279 doi:10.1519/JSC.0b013e3181bac52e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kenttä G, Hassmén P. Overtraining and recovery. A conceptual model. Sports Med. 1998;26(1):1–16. PubMed ID: 9739537 doi:10.2165/00007256-199826010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Rohlfs ICPdM, Rotta TM, Luft CDB, Andrade A, Krebs RJ, de Carvalho T. A Escala de Humor de Brunel (Brums): instrumento para detecção precoce da síndrome do excesso de treinamento. Rev Bras Med Esporte. 2008;14:176–181. doi:10.1590/S1517-86922008000300003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Hopkins WG. A scale of magnitudes for effect statistics 2002. 2002. Retrieved from https://www.sportsci.org/resource/stats/effectmag.html Accessed May 5, 2018.

    • Search Google Scholar
    • Export Citation
  • 23.

    Rowell AE, Aughey RJ, Hopkins WG, Stewart AM, Cormack SJ. Identification of sensitive measures of recovery after external load from football match play. Int J Sports Physiol Perform. 2017;12(7):969–976. PubMed ID: 27967334 doi:10.1123/ijspp.2016-0522

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    St Clair Gibson A, Swart J, Tucker R. The interaction of psychological and physiological homeostatic drives and role of general control principles in the regulation of physiological systems, exercise and the fatigue process—The Integrative Governor theory. Eur J Sport Sci. 2018;18(1):25–36. PubMed ID: 28478704 doi:10.1080/17461391.2017.1321688

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Pimenta EM, Coelho DB, Cruz IR, et al. The ACTN3 genotype in soccer players in response to acute eccentric training. Eur J Appl Physiol. 2012;112(4):1495–1503. PubMed ID: 21842214 doi:10.1007/s00421-011-2109-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Pimenta EM, Coelho DB, Veneroso CE, et al. Effect of ACTN3 gene on strength and endurance in soccer players. J Strength Cond Res. 2013;27(12):3286–3292. PubMed ID: 23539075 doi:10.1519/JSC.0b013e3182915e66

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Nakamura FY, Pereira LA, Rabelo FN, Ramirez-Campillo R, Loturco I. Faster futsal players perceive higher training loads and present greater decreases in sprinting speed during the preseason. J Strength Cond Res. 2016;30(6):1553–1562. PubMed ID: 26562717 doi:10.1519/JSC.0000000000001257

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Doeven SH, Brink MS, Frencken WGP, Lemmink KAPM. Impaired player–coach perceptions of exertion and recovery during match congestion. Int J Sports Physiol Perform. 2017;12(9):1151–1156. PubMed ID: 28095076 doi:10.1123/ijspp.2016-0363

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gallo T, Cormack S, Gabbett T, Williams M, Lorenzen C. Characteristics impacting on session rating of perceived exertion training load in Australian footballers. J Sports Sci. 2015;33(5):467–475. PubMed ID: 25113820 doi:10.1080/02640414.2014.947311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 199 199 47
Full Text Views 27 27 3
PDF Downloads 12 12 2