Association Between Deoxygenated Hemoglobin Breaking Point, Anaerobic Threshold, and Rowing Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To compare the intensity and physiological responses of deoxygenated hemoglobin breaking point ([HHb]BP) and anaerobic threshold (AnT) during an incremental test and to verify their association with 2000-m rowing-ergometer performance in well-trained rowers. Methods: A total of 13 male rowers (mean [SD] age = 24 [11] y and V˙O2peak = 63.7 [6.1] mL·kg−1·min−1) performed a step incremental test. Gas exchange, vastus lateralis [HHb], and blood lactate concentration were measured. Power output, V˙O2, and heart rate of [HHb]BP and AnT were determined and compared with each other. A 2000-m test was performed in another visit. Results: No differences were found between [HHb]BP and AnT in the power output (236 [31] vs 234 [31] W; Δ = 0.7%), 95% confidence interval [CI] 6.7%), V˙O2 (4.2 [0.5] vs 4.3 [0.4] L·min−1; Δ = −0.8%, 95% CI 4.0%), or heart rate (180 [16] vs 182 [12] beats·min−1; Δ = −1.6%, 95% CI 2.1%); however, there was high typical error of estimate (TEE) and wide 95% limits of agreement (LoA) for power output (TEE 10.7%, LoA 54.1–50.6 W), V˙O2 (TEE 5.9%, LoA −0.57 to 0.63 L·min−1), and heart rate (TEE 2.4%, LoA −9.6 to 14.7 beats·min−1). Significant correlations were observed between [HHb]BP (r = .70) and AnT (r = .89) with 2000-m mean power. Conclusions: These results demonstrate a breaking point in [HHb] of the vastus lateralis muscle during the incremental test that is capable of distinguishing rowers with different performance levels. However, the high random error would compromise the use of [HHb]BP for training and testing in rowing.

Turnes and Possamai are with the Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Brazil. Turnes, Penteado dos Santos, de Aguiar, Loch, and Caputo are with the Human Performance Research Group, Center for Health Sciences and Sport, Santa Catarina State University, Florianópolis, Brazil.

Turnes (tiago.turnes@ufsc.br) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Muthalib MMillet GYQuaresima VNosaka K. Reliability of near-infrared spectroscopy for measuring biceps brachii oxygenation during sustained and repeated isometric contractions. J Biomed Opt. 2010;15(1):017008. PubMed ID: 20210482 doi:10.1117/1.3309746

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Boone JVandekerckhove KCoomans IPrieur FBourgois JG. An integrated view on the oxygenation responses to incremental exercise at the brain, the locomotor and respiratory muscles. Eur J Appl Physiol. 2016;116(11–12):20852102. doi:10.1007/s00421-016-3468-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Iannetta DQahtani AMattioni Maturana FMurias JM. The near-infrared spectroscopy-derived deoxygenated haemoglobin breaking-point is a repeatable measure that demarcates exercise intensity domains. J Sci Med Sport. 2017;20(9):873877. PubMed ID: 28254143 doi:10.1016/j.jsams.2017.01.237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Spencer MDMurias JMPaterson DH. Characterizing the profile of muscle deoxygenation during ramp incremental exercise in young men. Eur J Appl Physiol. 2012;112(9):33493360. PubMed ID: 22270488 doi:10.1007/s00421-012-2323-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Fontana FYKeir DABellotti CDe Roia GFMurias JMPogliaghi S. Determination of respiratory point compensation in healthy adults: can non-invasive near-infrared spectroscopy help? J Sci Med Sport. 2015;18(5):590595. PubMed ID: 25153251 doi:10.1016/j.jsams.2014.07.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Keir DAFontana FYRobertson TCet al. Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exerc. 2015;47(9):19321940. doi:10.1249/MSS.0000000000000613

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bellotti CCalabria ECapelli CPogliaghi S. Determination of maximal lactate steady state in healthy adults: can NIRS help? Med Sci Sports Exerc. 2013;45(6):12081216. doi:10.1249/MSS.0b013e3182828ab2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Wasserman KWhipp BJKoyl SNBeaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35(2):236243. PubMed ID: 4723033 doi:10.1152/jappl.1973.35.2.236

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Grassi BQuaresima VMarconi CFerrari MCerretelli P. Blood lactate accumulation and muscle deoxygenation during incremental exercise. J Appl Physiol. 1999;87(1):348355. PubMed ID: 10409594 doi:10.1152/jappl.1999.87.1.348

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Snyder ACParmenter MA. Using near-infrared spectroscopy to determine maximal steady state exercise intensity. J Strength Cond Res. 2009;23(6):18331840. PubMed ID: 19675475 doi:10.1519/JSC.0b013e3181ad3362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Billat VLSirvent PPy GKoralsztein JPMercier J. The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science. Sports Med. 2003;33(6):407426. PubMed ID: 12744715 doi:10.2165/00007256-200333060-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Svedahl KMacIntosh BR. Anaerobic threshold: the concept and methods of measurement. Can J Appl Physiol. 2003;28(2):299323. PubMed ID: 12825337 doi:10.1139/h03-023

  • 13.

    Smith TBHopkins WG. Measures of rowing performance. Sports Med. 2012;42(4):343358. PubMed ID: 22401296 doi:10.2165/11597230-000000000-00000

  • 14.

    Heck HMader AHess GMucke SMuller RHollmann W. Justification of the 4-mmol/l lactate threshold. Int J Sports Med. 1985;6(3):117130. PubMed ID: 4030186 doi:10.1055/s-2008-1025824

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kuipers HVerstappen FTKeizer HAGeurten Pvan Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med. 1985;6(4):197201. PubMed ID: 4044103 doi:10.1055/s-2008-1025839

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bland JMAltman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135160. PubMed ID: 10501650 doi:10.1177/096228029900800204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sales MMSousa CVda Silva Aguiar Set al. An integrative perspective of the anaerobic threshold. Physiol Behav. 2019;205:2932. doi:10.1016/j.physbeh.2017.12.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Jamnick NABotella JPyne DBBishop DJ. Manipulating graded exercise test variables affects the validity of the lactate threshold and VO2peak. PLoS ONE. 2018;13(7):e0199794. PubMed ID: 30059543 doi:10.1371/journal.pone.0199794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Beneke R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc. 1995;27(6):863867. PubMed ID: 7658947 doi:10.1249/00005768-199506000-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Bourdon PCWoolford SMBuckley JD. Effects of varying the step duration on the determination of lactate thresholds in elite rowers. Int J Sports Physiol Perform. 2018;13(6):687693. PubMed ID: 29035635 doi:10.1123/ijspp.2017-0258

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hoefelmann CPDiefenthaeler FCosta VPde Lucas RDShambrook PGuglielmo LG. Test-retest reliability of second lactate turnpoint using two different criteria in competitive cyclists. Eur J Sport Sci. 2015;15(4):265270. PubMed ID: 25135192 doi:10.1080/17461391.2014.944874

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ferreira LFHueber DMBarstow TJ. Effects of assuming constant optical scattering on measurements of muscle oxygenation by near-infrared spectroscopy during exercise. J Appl Physiol. 2007;102(1):358367. PubMed ID: 17023569 doi:10.1152/japplphysiol.00920.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Murias JMKeir DASpencer MDPaterson DH. Sex-related differences in muscle deoxygenation during ramp incremental exercise. Respir Physiol Neurobiol. 2013;189(3):530536. PubMed ID: 23994824 doi:10.1016/j.resp.2013.08.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Scheuermann BWTripse McConnell JHBarstow TJ. EMG and oxygen uptake responses during slow and fast ramp exercise in humans. Exp Physiol. 2002;87(1):91100. PubMed ID: 11805863 doi:10.1113/eph8702246

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Iannetta DQahtani AMillet GYMurias JM. Quadriceps muscles O2 extraction and EMG breakpoints during a ramp incremental test. Front Physiol. 2017;8:686. PubMed ID: 28970805 doi:10.3389/fphys.2017.00686

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bourdon P. Blood lactate transition thresholds: concepts and controversies. In: Gore CJTanner R eds. Physiological Tests for Elite AthletesChampaign, IL: Human Kinetics; 2000:560.

    • Search Google Scholar
    • Export Citation
  • 28.

    Chin LMKowalchuk JMBarstow TJet al. The relationship between muscle deoxygenation and activation in different muscles of the quadriceps during cycle ramp exercise. J Appl Physiol. 2011;111(5):12591265. PubMed ID: 21799133 doi:10.1152/japplphysiol.01216.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Boone JBarstow TJCelie BPrieur FBourgois J. The interrelationship between muscle oxygenation, muscle activation, and pulmonary oxygen uptake to incremental ramp exercise: influence of aerobic fitness. Appl Physiol Nutr Metab. 2016;41(1):5562. PubMed ID: 26701120 doi:10.1139/apnm-2015-0261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Koga SRossiter HBHeinonen IMusch TIPoole DC. Dynamic heterogeneity of exercising muscle blood flow and O2 utilization. Med Sci Sports Exerc. 2014;46(5):860876. doi:10.1249/MSS.0000000000000178

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Wilson JMJRobertson DGStothart JP. Analysis of lower limb muscle function in ergometer rowing. Int J Sport Biomech. 1988;4:315325. doi:10.1123/ijsb.4.4.315

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Rodriguez RJRogriguez RPCook SDSandborn PM. Electromyographic analysis of rowing stroke biomechanics. J Sports Med Phys Fitness. 1990;30(1):103108. PubMed ID: 2366528

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Turpin NAGuevel ADurand SHug F. Effect of power output on muscle coordination during rowing. Eur J Appl Physiol. 2011;111(12):30173029. PubMed ID: 21451939 doi:10.1007/s00421-011-1928-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Maestu JCicchella APurge PRuosi SJurimae JJurimae T. Electromyographic and neuromuscular fatigue thresholds as concepts of fatigue. J Strength Cond Res. 2006;20(4):824828. PubMed ID: 17149988

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Shaharudin SAgrawal S. Muscle synergies during incremental rowing VO2max test of collegiate rowers and untrained subjects. J Sports Med Phys Fitness. 2016;56(9):980989. PubMed ID: 25732319

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Turpin NAGuevel ADurand SHug F. No evidence of expertise-related changes in muscle synergies during rowing. J Electromyogr Kinesiol. 2011;21(6):10301040. PubMed ID: 21856171 doi:10.1016/j.jelekin.2011.07.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 35 35 35
Full Text Views 7 7 7
PDF Downloads 3 3 3
Altmetric Badge
PubMed
Google Scholar