Association Between Deoxygenated Hemoglobin Breaking Point, Anaerobic Threshold, and Rowing Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To compare the intensity and physiological responses of deoxygenated hemoglobin breaking point ([HHb]BP) and anaerobic threshold (AnT) during an incremental test and to verify their association with 2000-m rowing-ergometer performance in well-trained rowers. Methods: A total of 13 male rowers (mean [SD] age = 24 [11] y and V˙O2peak = 63.7 [6.1] mL·kg−1·min−1) performed a step incremental test. Gas exchange, vastus lateralis [HHb], and blood lactate concentration were measured. Power output, V˙O2, and heart rate of [HHb]BP and AnT were determined and compared with each other. A 2000-m test was performed in another visit. Results: No differences were found between [HHb]BP and AnT in the power output (236 [31] vs 234 [31] W; Δ = 0.7%), 95% confidence interval [CI] 6.7%), V˙O2 (4.2 [0.5] vs 4.3 [0.4] L·min−1; Δ = −0.8%, 95% CI 4.0%), or heart rate (180 [16] vs 182 [12] beats·min−1; Δ = −1.6%, 95% CI 2.1%); however, there was high typical error of estimate (TEE) and wide 95% limits of agreement (LoA) for power output (TEE 10.7%, LoA 54.1–50.6 W), V˙O2 (TEE 5.9%, LoA −0.57 to 0.63 L·min−1), and heart rate (TEE 2.4%, LoA −9.6 to 14.7 beats·min−1). Significant correlations were observed between [HHb]BP (r = .70) and AnT (r = .89) with 2000-m mean power. Conclusions: These results demonstrate a breaking point in [HHb] of the vastus lateralis muscle during the incremental test that is capable of distinguishing rowers with different performance levels. However, the high random error would compromise the use of [HHb]BP for training and testing in rowing.

Turnes and Possamai are with the Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis, Brazil. Turnes, Penteado dos Santos, de Aguiar, Loch, and Caputo are with the Human Performance Research Group, Center for Health Sciences and Sport, Santa Catarina State University, Florianópolis, Brazil.

Turnes (tiago.turnes@ufsc.br) is corresponding author.
  • 1.

    Muthalib M, Millet GY, Quaresima V, Nosaka K. Reliability of near-infrared spectroscopy for measuring biceps brachii oxygenation during sustained and repeated isometric contractions. J Biomed Opt. 2010;15(1):017008. PubMed ID: 20210482 doi:10.1117/1.3309746

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Boone J, Vandekerckhove K, Coomans I, Prieur F, Bourgois JG. An integrated view on the oxygenation responses to incremental exercise at the brain, the locomotor and respiratory muscles. Eur J Appl Physiol. 2016;116(11–12):2085–2102. doi:10.1007/s00421-016-3468-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Iannetta D, Qahtani A, Mattioni Maturana F, Murias JM. The near-infrared spectroscopy-derived deoxygenated haemoglobin breaking-point is a repeatable measure that demarcates exercise intensity domains. J Sci Med Sport. 2017;20(9):873–877. PubMed ID: 28254143 doi:10.1016/j.jsams.2017.01.237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Spencer MD, Murias JM, Paterson DH. Characterizing the profile of muscle deoxygenation during ramp incremental exercise in young men. Eur J Appl Physiol. 2012;112(9):3349–3360. PubMed ID: 22270488 doi:10.1007/s00421-012-2323-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Fontana FY, Keir DA, Bellotti C, De Roia GF, Murias JM, Pogliaghi S. Determination of respiratory point compensation in healthy adults: can non-invasive near-infrared spectroscopy help? J Sci Med Sport. 2015;18(5):590–595. PubMed ID: 25153251 doi:10.1016/j.jsams.2014.07.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Keir DA, Fontana FY, Robertson TC, et al. Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exerc. 2015;47(9):1932–1940. doi:10.1249/MSS.0000000000000613

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bellotti C, Calabria E, Capelli C, Pogliaghi S. Determination of maximal lactate steady state in healthy adults: can NIRS help? Med Sci Sports Exerc. 2013;45(6):1208–1216. doi:10.1249/MSS.0b013e3182828ab2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Wasserman K, Whipp BJ, Koyl SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35(2):236–243. PubMed ID: 4723033 doi:10.1152/jappl.1973.35.2.236

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Grassi B, Quaresima V, Marconi C, Ferrari M, Cerretelli P. Blood lactate accumulation and muscle deoxygenation during incremental exercise. J Appl Physiol. 1999;87(1):348–355. PubMed ID: 10409594 doi:10.1152/jappl.1999.87.1.348

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Snyder AC, Parmenter MA. Using near-infrared spectroscopy to determine maximal steady state exercise intensity. J Strength Cond Res. 2009;23(6):1833–1840. PubMed ID: 19675475 doi:10.1519/JSC.0b013e3181ad3362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Billat VL, Sirvent P, Py G, Koralsztein JP, Mercier J. The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science. Sports Med. 2003;33(6):407–426. PubMed ID: 12744715 doi:10.2165/00007256-200333060-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Svedahl K, MacIntosh BR. Anaerobic threshold: the concept and methods of measurement. Can J Appl Physiol. 2003;28(2):299–323. PubMed ID: 12825337 doi:10.1139/h03-023

  • 13.

    Smith TB, Hopkins WG. Measures of rowing performance. Sports Med. 2012;42(4):343–358. PubMed ID: 22401296 doi:10.2165/11597230-000000000-00000

  • 14.

    Heck H, Mader A, Hess G, Mucke S, Muller R, Hollmann W. Justification of the 4-mmol/l lactate threshold. Int J Sports Med. 1985;6(3):117–130. PubMed ID: 4030186 doi:10.1055/s-2008-1025824

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med. 1985;6(4):197–201. PubMed ID: 4044103 doi:10.1055/s-2008-1025839

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–160. PubMed ID: 10501650 doi:10.1177/096228029900800204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sales MM, Sousa CV, da Silva Aguiar S, et al. An integrative perspective of the anaerobic threshold. Physiol Behav. 2019;205:29–32. doi:10.1016/j.physbeh.2017.12.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Jamnick NA, Botella J, Pyne DB, Bishop DJ. Manipulating graded exercise test variables affects the validity of the lactate threshold and VO2peak. PLoS ONE. 2018;13(7):e0199794. PubMed ID: 30059543 doi:10.1371/journal.pone.0199794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Beneke R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc. 1995;27(6):863–867. PubMed ID: 7658947 doi:10.1249/00005768-199506000-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Bourdon PC, Woolford SM, Buckley JD. Effects of varying the step duration on the determination of lactate thresholds in elite rowers. Int J Sports Physiol Perform. 2018;13(6):687–693. PubMed ID: 29035635 doi:10.1123/ijspp.2017-0258

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hoefelmann CP, Diefenthaeler F, Costa VP, de Lucas RD, Shambrook P, Guglielmo LG. Test-retest reliability of second lactate turnpoint using two different criteria in competitive cyclists. Eur J Sport Sci. 2015;15(4):265–270. PubMed ID: 25135192 doi:10.1080/17461391.2014.944874

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ferreira LF, Hueber DM, Barstow TJ. Effects of assuming constant optical scattering on measurements of muscle oxygenation by near-infrared spectroscopy during exercise. J Appl Physiol. 2007;102(1):358–367. PubMed ID: 17023569 doi:10.1152/japplphysiol.00920.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Murias JM, Keir DA, Spencer MD, Paterson DH. Sex-related differences in muscle deoxygenation during ramp incremental exercise. Respir Physiol Neurobiol. 2013;189(3):530–536. PubMed ID: 23994824 doi:10.1016/j.resp.2013.08.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Scheuermann BW, Tripse McConnell JH, Barstow TJ. EMG and oxygen uptake responses during slow and fast ramp exercise in humans. Exp Physiol. 2002;87(1):91–100. PubMed ID: 11805863 doi:10.1113/eph8702246

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Iannetta D, Qahtani A, Millet GY, Murias JM. Quadriceps muscles O2 extraction and EMG breakpoints during a ramp incremental test. Front Physiol. 2017;8:686. PubMed ID: 28970805 doi:10.3389/fphys.2017.00686

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bourdon P. Blood lactate transition thresholds: concepts and controversies. In: Gore CJ, Tanner R, eds. Physiological Tests for Elite Athletes. Champaign, IL: Human Kinetics; 2000:560.

    • Search Google Scholar
    • Export Citation
  • 28.

    Chin LM, Kowalchuk JM, Barstow TJ, et al. The relationship between muscle deoxygenation and activation in different muscles of the quadriceps during cycle ramp exercise. J Appl Physiol. 2011;111(5):1259–1265. PubMed ID: 21799133 doi:10.1152/japplphysiol.01216.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Boone J, Barstow TJ, Celie B, Prieur F, Bourgois J. The interrelationship between muscle oxygenation, muscle activation, and pulmonary oxygen uptake to incremental ramp exercise: influence of aerobic fitness. Appl Physiol Nutr Metab. 2016;41(1):55–62. PubMed ID: 26701120 doi:10.1139/apnm-2015-0261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Koga S, Rossiter HB, Heinonen I, Musch TI, Poole DC. Dynamic heterogeneity of exercising muscle blood flow and O2 utilization. Med Sci Sports Exerc. 2014;46(5):860–876. doi:10.1249/MSS.0000000000000178

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Wilson JMJ, Robertson DG, Stothart JP. Analysis of lower limb muscle function in ergometer rowing. Int J Sport Biomech. 1988;4:315–325. doi:10.1123/ijsb.4.4.315

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Rodriguez RJ, Rogriguez RP, Cook SD, Sandborn PM. Electromyographic analysis of rowing stroke biomechanics. J Sports Med Phys Fitness. 1990;30(1):103–108. PubMed ID: 2366528

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Turpin NA, Guevel A, Durand S, Hug F. Effect of power output on muscle coordination during rowing. Eur J Appl Physiol. 2011;111(12):3017–3029. PubMed ID: 21451939 doi:10.1007/s00421-011-1928-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Maestu J, Cicchella A, Purge P, Ruosi S, Jurimae J, Jurimae T. Electromyographic and neuromuscular fatigue thresholds as concepts of fatigue. J Strength Cond Res. 2006;20(4):824–828. PubMed ID: 17149988

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Shaharudin S, Agrawal S. Muscle synergies during incremental rowing VO2max test of collegiate rowers and untrained subjects. J Sports Med Phys Fitness. 2016;56(9):980–989. PubMed ID: 25732319

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Turpin NA, Guevel A, Durand S, Hug F. No evidence of expertise-related changes in muscle synergies during rowing. J Electromyogr Kinesiol. 2011;21(6):1030–1040. PubMed ID: 21856171 doi:10.1016/j.jelekin.2011.07.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 152 153 36
Full Text Views 25 25 3
PDF Downloads 21 21 4