The Discriminant Validity of a Standardized Testing Battery and Its Ability to Differentiate Anthropometric and Physical Characteristics Between Youth, Academy, and Senior Professional Rugby League Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To assess whether a standardized testing battery can differentiate anthropometric and physical qualities between youth, academy, and senior rugby league players and determine the discriminant validity of the battery. Methods: A total of 729 rugby league players from multiple clubs in England categorized as youth (n = 235), academy (n = 362), and senior (n = 132) players completed a standardized testing battery that included the assessment of anthropometric and physical characteristics during preseason. Data were analyzed using magnitude-based inferences and discriminant analysis. Results: Academy players were most likely taller and heavier than youth players (effect size [ES] = 0.64–1.21), with possibly to most likely superior countermovement jump, medicine-ball throw, and prone Yo-Yo Intermittent Recovery Test Level 1 (Yo-Yo IR1) performance (ES = 0.23–1.00). Senior players were likely to most likely taller and heavier (ES = 0.32–1.84), with possibly to most likely superior 10- and 20-m sprint times, countermovement jump, change of direction, medicine-ball throw, and prone Yo-Yo IR1 than youth and academy players (ES = −0.60 to 2.06). The magnitude of difference appeared to be influenced by playing position. For the most part, the battery possessed discriminant validity with an accuracy of 72.2%. Conclusion: The standardized testing battery differentiates anthropometric and physical qualities of youth, academy, and senior players as a group and, in most instances, within positional groups. Furthermore, the battery is able to discriminate between playing standards with good accuracy and might be included in future assessments and rugby league talent identification.

The authors are with the Dept of Sport and Exercise Sciences, University of Chester, Chester, United Kingdom. Dobbin is also with Rugby Football League, Leeds, United Kingdom, and the Dept of Health Professions, Manchester Metropolitan University, Manchester, United Kingdom.

Twist (c.twist@chester.ac.uk) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Till KCobley SO’Hara JMorley DChapman CCooke C. Retrospective analysis of anthropometric and fitness characteristics associated with long-term career progression in rugby league. J Sci Med Sport. 2015;18(3):310314. PubMed ID: 24933504 doi:10.1016/j.jsams.2014.05.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Dodd KDNewans TJ. Talent identification for soccer: physiological aspects. J Sci Med Sport. 2018;21(10):10731078. PubMed ID: 29789264 doi:10.1016/j.jsams.2018.01.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Waldron MWorsfold PTwist CLamb K. Changes in anthropometry and performance, and their interrelationships, across three seasons in elite youth rugby league players. J Strength Cond Res. 2014;28(11):31283136. PubMed ID: 25226320 doi:10.1519/JSC.0000000000000445

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Till KJones BLCobley Set al. Identifying talent in youth sport: a novel methodology using higher-dimensional analysis. PLoS ONE. 2016;11(5):e0155047. PubMed ID: 27224653 doi:10.1371/journal.pone.0155047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Vaeyens RLenoir MWilliams AMPhilippaerts RM. Talent identification and development programmes in sport: current models and future directions. Sports Med. 2008;38(9):703714. PubMed ID: 18712939 doi:10.2165/00007256-200838090-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Woods CTBanyard HGMcKeown IFransen JRobertson S. Discriminating talent identified junior Australian footballers using a fundamental gross athletic movement assessment. J Sports Sci Med. 2016;15(3):548553. PubMed ID: 27803635

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gaudion SLDoma KSinclair WBanyard HGWoods CT. Identifying the physical fitness, anthropometric and athletic movement qualities discriminant of developmental level in elite junior Australian football: implications for the development of talent. J Strength Cond Res. 2017;31(7):18301839. PubMed ID: 27787473 doi:10.1519/JSC.0000000000001682

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Burgess DJNaughton GA. Talent development in adolescent team sports: a review. Int J Sports Physiol Perform. 2010;5(1):103116. PubMed ID: 20308701 doi:10.1123/ijspp.5.1.103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Baker DGNewton RU. Comparison of lower body strength, power, acceleration, speed, agility, and sprint momentum to describe and compare playing rank among professional rugby league players. J Strength Cond Res. 2008;22(1):153158. PubMed ID: 18296969 doi:10.1519/JSC.0b013e31815f9519

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dobbin NHunwicks RJones BTill KHighton JTwist C. Criterion and construct validity of an isometric midthigh-pull dynamometer for assessing whole-body strength in professional rugby league players. Int J Sports Physiol Perform. 2018;13(2):235239. PubMed ID: 28605261 doi:10.1123/ijspp.2017-0166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gabbett TJKelly JNSheppard JM. Speed, change of direction speed, and reactive agility of rugby league players. J Strength Cond Res. 2008;22(1):174181. PubMed ID: 18296972 doi:10.1519/JSC.0b013e31815ef700

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gabbett TJ. A comparison of physiological and anthropometric characteristics among playing positions in sub-elite rugby league players. J Sports Sci. 2006;24(12):12731280. doi:10.1080/02640410500497675

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Morehen JCRoutledge HETwist CMorton JPClose GL. Position specific differences in anthropometric characteristics of elite European Super League rugby players. Eur J Sport Sci. 2015;15(6):523529. PubMed ID: 25600232 doi:10.1080/17461391.2014.997802

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Tredrea MDascombe BSanctuary CWScanlan AT. The role of anthropometric, performance and psychological attributes in predicting selection into an elite development programme in older adolescent rugby league players. J Sports Sci. 2017;35(19):18971903. PubMed ID: 27724178 doi:10.1080/02640414.2016.1241418

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Till KScantlebury SJones B. Anthropometric and physical qualities of elite male youth rugby league players. Sports Med. 2017;47(11):21712186. PubMed ID: 28578541 doi:10.1007/s40279-017-0745-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Gabbett TJ. Physiological characteristics of junior and senior rugby league players. Br J Sports Med. 2002;36(5):334339. PubMed ID: 12351330 doi:10.1136/bjsm.36.5.334

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Dobbin NHunwicks RHighton JTwist C. A reliable testing battery for assessing physical qualities of elite academy rugby league players. J Strength Cond Res. 2018;32(11):32323238. doi:10.1519/JSC.0000000000002280

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Dobbin NHunwicks RHighton JTwist C. Validity of a jump mat for assessing countermovement jump performance in elite rugby players. Int J Sports Med. 2017;38(2):99104. PubMed ID: 27931051

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Dobbin NHighton JMoss SLHunwicks RTwist C. Concurrent validity of a rugby-specific Yo-Yo Intermittent Recovery Test (Level 1) for assessing match-related running performance [published online ahead of print June 1 2018]. J Strength Cond Res. doi:10.1519/JSC.0000000000002621

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Batterham AMHopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hopkins WG. A spreadsheet to compare means of two groups. Sportscience. 2007;11:2223. http://sportsci.org/2007/inbrief.htm#xcl2.

  • 23.

    Dempsey GMGibson NVSykes DPryjmachuk BCTurner AP. Match demands of senior and junior players during international rugby league. J Strength Cond Res. 2018;32(6):16781684. PubMed ID: 28800006 doi:10.1519/JSC.0000000000002028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Meyers RWOliver JLHughes MGLloyd RSCronin JB. Influence of age, maturity, and body size on the spatiotemporal determinants of maximal sprint speed in boys. J Strength Cond Res. 2017;31(4):10091016. PubMed ID: 26694506 doi:10.1519/JSC.0000000000001310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Rabita GDorel SSlawinski Jet al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25(5):583594. PubMed ID: 25640466 doi:10.1111/sms.12389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Scott TJDascombe BJDelaney JAet al. Running momentum: a new method to quantify prolonged high-intensity intermittent running performance in collision sports. Sci Med Footb. 2017;1(3):244250. doi:10.1080/24733938.2017.1331044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Delaney JAScott TJBallard DAet al. Contributing factors to change-of-direction ability in professional rugby league players. J Strength Cond Res. 2015;29(10):26882696. PubMed ID: 25853913 doi:10.1519/JSC.0000000000000960

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Baker DGNewton RU. Discriminative analyses of various upper body tests in professional rugby-league players. Int J Sports Physiol Perform. 2006;1(4):347360. PubMed ID: 19124892 doi:10.1123/ijspp.1.4.347

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Darrall-Jones JRoe GCarney Set al. The effect of body mass on the 30-15 Intermittent Fitness Test in rugby union players. Int J Sports Physiol Perform. 2016;11(3):400403. PubMed ID: 26217047 doi:10.1123/ijspp.2015-0231

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Waldron MGray AWorsfold PTwist C. The reliability of functional movement screening and in-season changes in physical function and performance among elite rugby league players. J Strength Cond Res. 2016;30(4):910918. PubMed ID: 27003450 doi:10.1519/JSC.0000000000000270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 92 92 61
Full Text Views 15 15 8
PDF Downloads 10 10 5
Altmetric Badge
PubMed
Google Scholar