Cycling at Altitude: Lower Absolute Power Output as the Main Cause of Lower Gross Efficiency

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Background: Although cyclists often compete at altitude, the effect of altitude on gross efficiency (GE) remains inconclusive. Purpose: To investigate the effect of altitude on GE at the same relative exercise intensity and at the same absolute power output (PO) and to determine the effect of altitude on the change in GE during high-intensity exercise. Methods: Twenty-one trained men performed 3 maximal incremental tests and 5 GE tests at sea level, 1500 m, and 2500 m of acute simulated altitude. The GE tests at altitude were performed once at the same relative exercise intensity and once at the same absolute PO as at sea level. Results: Altitude resulted in an unclear effect at 1500 m (−3.8%; ±3.3% [90% confidence limit]) and most likely negative effect at 2500 m (−6.3%; ±1.7%) on pre-GE, when determined at the same relative exercise intensity. When pre-GE was determined at the same absolute PO, unclear differences in GE were found (−1.5%; ±2.6% at 1500 m; −1.7%; ±2.4% at 2500 m). The effect of altitude on the decrease in GE during high-intensity exercise was unclear when determined at the same relative exercise intensity (−0.4%; ±2.8% at 1500 m; −0.7%; ±1.9% at 2500 m). When GE was determined at the same absolute PO, altitude resulted in a substantially smaller decrease in GE (2.8%; ±2.4% at 1500 m; 5.5%; ±2.9% at 2500 m). Conclusion: The lower GE found at altitude when exercise is performed at the same relative exercise intensity is mainly caused by the lower PO at which cyclists exercise.

van Erck, Wenker, Levels, Foster, and de Koning are with the Dept of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Foster and de Koning are also with the Dept of Exercise and Sport Science, University of Wisconsin–La Crosse, La Crosse, WI. Noordhof is with the Dept of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

Noordhof (dionne.a.noordhof@ntnu.no) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Joyner MJCoyle EF. Endurance exercise performance: the physiology of champions: factors that make champions. J Physiol. 2008;586;3544. PubMed ID: 17901124 doi:10.1113/jphysiol.2007.143834

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ettema GLorås HW. Efficiency in cycling: a review. Eur J Appl Physiol. 2009;106:114. PubMed ID: 19229554 doi:10.1007/s00421-009-1008-7

  • 3.

    Wehrlin JPHallén J. Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol. 2006;96:404412. PubMed ID: 16311764 doi:10.1007/s00421-005-0081-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Katayama KGoto KIshida KOgita F. Substrate utilization during exercise and recovery at moderate altitude. Metabolism. 2010;59:959966. PubMed ID: 20036404 doi:10.1016/j.metabol.2009.10.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lawler JPowers SKThompson D. Linear relationship between VO2max and VO2max decrement during exposure to acute hypoxia. J Appl Physiol. 1988;64:14861492. PubMed ID: 3378983 doi:10.1152/jappl.1988.64.4.1486

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Noordhof DASchoots THoekert DHde Koning JJ. Is gross efficiency lower at acute simulated altitude than at sea level? Int J Sports Physiol Perform. 2013;8:319322. PubMed ID: 23070876 doi:10.1123/ijspp.8.3.319

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Peltonen JETikkanen HORusko HK. Cardiorespiratory responses to exercise in acute hypoxia, hyperoxia and normoxia. Eur J Appl Physiol. 2001;85:8288. PubMed ID: 11513325 doi:10.1007/s004210100411

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Amann MPegelow DFJacques AJDempsey JA. Inspiratory muscle work in acute hypoxia influences locomotor muscle fatigue and exercise performance of healthy humans. Am J Physiol Regul Integr Comp Physiol. 2007;293:R2036R2045. doi:10.1152/ajpregu.00442.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Clark SABourdon PCSchmidt Wet al. The effect of acute simulated moderate altitude on power, performance and pacing strategies in well-trained cyclists. Eur J Appl Physiol. 2007;102:4555. PubMed ID: 17882451 doi:10.1007/s00421-007-0554-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Schuler BThomsen JJGassmann MLundby C. Timing the arrival at 2340 m altitude for aerobic performance. Scand J Med Sci Sports 2007;17:588594. PubMed ID: 17316377 doi:10.1111/j.1600-0838.2006.00611.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    de Koning JJNoordhof DALucia AFoster C. Factors affecting gross efficiency in cycling. Int J Sports Med. 2012;33:880885. PubMed ID: 22706941 doi:10.1055/s-0032-1306285

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Moseley LJeukendrup AE. The reliability of cycling efficiency. Med Sci Sports Exerc. 2001;33:621627. PubMed ID: 11283439 doi:10.1097/00005768-200104000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Niu WWu YLi BChen NSong S. Effects of long-term acclimatization in lowlanders migrating to high altitude: comparison with high altitude residents. Eur J Appl Physiol. 1995;71:543548. doi:10.1007/BF00238558

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Noordhof DAMulder RCMMalterer KRFoster Cde Koning JJ. The decline in gross efficiency in relation to cycling time-trial length. Int J Sports Physiol Perform. 2015;10:6470. PubMed ID: 24911784 doi:10.1123/ijspp.2014-0034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    de Koning JJNoordhof DATom PUGaliart REDodge CFoster C. An approach to estimating gross efficiency during high-intensity exercise. Int J Sports Physiol Perform. 2013;8:682684. PubMed ID: 23006833 doi:10.1123/ijspp.8.6.682

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Sahlin KSorensen JGladden LRositter HPedersen P. Prior heavy exercise eliminates VO2 slow component and reduces efficiency during submaximal exercise in humans. J Physiol. 2005;564:765773. PubMed ID: 15746165 doi:10.1113/jphysiol.2005.083840

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Grasaas Ettema GHegge AMSkovereng KSandbakk Ø. Changes in technique and efficiency after high-intensity exercise in cross-country skiers. Int J Sports Physiol Perform. 2014;9:1924. doi:10.1123/ijspp.2013-0344

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    de Pauw KDRoelands BCheung SSde Geus BRietjens GMeeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8:111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Foster CSchrager MSnyder ACThompson NN. Pacing strategy and athletic performance. Sports Med. 1994;17:7785. PubMed ID: 8171225 doi:10.2165/00007256-199417020-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins WG. Spreadsheets for analysis of controlled trials, with adjustment for a subject characteristic. Sportsci. 2006;10:4650.

  • 21.

    Hopkins WGHawley JABurke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc. 1999;31:472485. PubMed ID: 10188754 doi:10.1097/00005768-199903000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hickey MSCostill DLMcConell GKWidrick JJTanaka H. Day to day variation in time trial cycling performance. Int J Sports Med. 1992;13:467470. PubMed ID: 1428377 doi:10.1055/s-2007-1021299

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science: Med Sci Sports Exerc. 2009;41:313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Chavarren JCalbet JA. Cycling efficiency and pedalling frequency in road cyclists. Eur J Appl Physiol. 1999;80:555563. doi:10.1007/s004210050634

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Romer LMHaverkamp HCAmann MLovering ATPegelow DFDempsey JA. Effect of acute severe hypoxia on peripheral fatigue and endurance capacity in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2006;292:R598R606. doi:10.1152/ajpregu.00269.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 152 152 82
Full Text Views 12 12 1
PDF Downloads 9 9 1
Altmetric Badge
PubMed
Google Scholar