Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Endurance exercise performance in hypoxia may be influenced by an ability to maintain high minute ventilation (V˙E) in defense of reduced arterial oxyhemoglobin saturation. Inspiratory muscle training (IMT) has been used as an effective intervention to attenuate the negative physiological consequences associated with an increased V˙E, resulting in improved submaximal-exercise performance in normoxia. However, the efficacy of IMT on hypoxic exercise performance remains unresolved. Purpose: To determine whether chronic IMT improves submaximal-exercise performance with acute hypoxic exposure. Methods: A total of 14 endurance-trained men completed a 20-km cycling time trial (TT) in normobaric hypoxia (fraction of inspired oxygen [FiO2] = 0.16) before and after either 6 wk of an IMT protocol consisting of inspiratory loads equivalent to 80% of sustained maximal inspiratory pressure (n = 9) or a SHAM protocol (30% of sustained maximal inspiratory pressure; n = 5). Results: In the IMT group, 20-km TT performance significantly improved by 1.45 (2.0%), P = .03, after the 6-wk intervention. The significantly faster TT times were accompanied by a higher average V˙E (pre vs post: 99.3 [14.5] vs 109.9 [18.0] L·min−1, P = .01) and absolute oxygen uptake (pre vs post: 3.39 [0.52] vs 3.60 [0.58] L·min−1, P = .010), with no change in ratings of perceived exertion or dyspnea (P > .06). There were no changes in TT performance in the SHAM group (P = .45). Conclusion: These data suggest that performing 6 wk of IMT may benefit hypoxic endurance exercise performance lasting 30–40 min.

The authors are with the Human Performance Laboratory, Dept of Kinesiology, Indiana University, Bloomington, IN. Wiggins is also with the Dept of Anesthesiology, Mayo Clinic, Rochester, MN.

Chapman (rfchapma@indiana.edu) is corresponding author.
  • 1.

    Chapman RF, Stager JM, Tanner DA, Stray-Gundersen J, Levine DL. Impairment of 3,000-m run times at altitude is influenced by arterial oxyhemoglobin saturation. Med Sci Sports Exerc. 2011;43(9):1649–1656. PubMed ID: 21311361 doi:10.1249/MSS.0b013e318211bf45

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Harms CA, Stager JM. Low chemoresponsiveness and inadequate hyperventilation contribute to exercise-induced hypoxemia. J Appl Physiol. 1995;79(2):575–580. PubMed ID: 7592220 doi:10.1152/jappl.1995.79.2.575

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Miyachi M, Tabata I. Relationship between arterial oxygen desaturation and ventilation during maximal exercise. J Appl Physiol. 1992;73(6):2588–2591. PubMed ID: 1490973 doi:10.1152/jappl.1992.73.6.2588

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Harms CA, Babcock MA, McClaran SR, et al. Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol. 1997;82:1573–1583. PubMed ID: 9134907 doi:10.1152/jappl.1997.82.5.1573

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Turner LA, Tecklenburg-Lund S, Chapman RF, Stager JM, Duke JW, Mickleborough TD. Inspiratory loading and limb locomotor and respiratory muscle deoxygenation during cycling exercise. Resp Physiol Neurobiol. 2013;185:506–514. doi:10.1016/j.resp.2012.11.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Holm P, Sattler A, Fregosi RF. Endurance training of respiratory muscles improves cycling performance in fit young cyclists. BMC Physiol. 2004;4:9. PubMed ID: 15132753 doi:10.1186/1472-6793-4-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Romer LM, McConnell AK, Jones DA. Effects of inspiratory muscle training on time-trial performance in trained cyclists. J Sports Sci. 2002;20:547–590. PubMed ID: 12166881 doi:10.1080/026404102760000053

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Helfer S, Quackenbush J, Fletcher M, Pendergast DR. Respiratory muscle training and exercise endurance at altitude. Aerosp Med Hum Perform. 2016;87(8):704–711. doi:10.3357/AMHP.4405.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Downey AE, Chenoweth LM, Townsend DK, Ranum JD, Ferguson CS, Harms CA. Effects of inspiratory muscle training on exercise responses in normoxia and hypoxia. Respir Physiol Neurobiol. 2007;156(2):137–146. PubMed ID: 16996322 doi:10.1016/j.resp.2006.08.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Voliantis S, McConnell AK, Koutedakis Y, McNaughton L, Bachx K, Jones DA. Inspiratory muscle training improves rowing performance. Med Sci Sports Exerc. 2001;33(5):803–809. doi:10.1097/00005768-200105000-00020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Johnson MA, Sharpe GR, Brown PI. Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. Eur J Appl Physiol. 2007;101:761–770. PubMed ID: 17874123 doi:10.1007/s00421-007-0551-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Edwards AM, Wells C, Butterly R. Concurrent inspiratory muscle and cardiovascular training differentially improves both perceptions of effort and 5,000-m running performance compared with cardiovascular training alone. Br J Sports Med. 2008;42:823–827. PubMed ID: 18308881 doi:10.1136/bjsm.2007.045377

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Leddy JJ, Limprasertkul A, Patel S, et al. Isocapnic hyperpnea training improves performance in competitive male runners. Eur J Appl Physiol. 2007;99:665–676. PubMed ID: 17242946 doi:10.1007/s00421-006-0390-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McConnell AK, Romer LM. Respiratory muscle training in healthy humans: resolving the controversy. Int J Sports Med. 2004;25:284–293. PubMed ID: 15162248 doi:10.1055/s-2004-815827

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Mickleborough TD, Nichols T, Lindley MR, Chatham K, Ionescu AA. Inspiratory flow resistive loading improves respiratory muscle function and endurance capacity in recreational runners. Scand J Med Sci Sports. 2010;20(3):458–468. PubMed ID: 19558387 doi:10.1111/j.1600-0838.2009.00951.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Williams JS, Wongsathikun J, Boon SM, Acevedo EO. Inspiratory muscle training fails to improve cycling performance in fit young cyclists. Med Sci Sports Exerc. 2002;34(7):1194–1198. PubMed ID: 12131262 doi:10.1097/00005768-200207000-00022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Salazar-Martinez E, Gatterer H, Burtscher M, Naranjo Orellana J, Santalla A. Influence of inspiratory muscle training on ventilatory efficiency and cycling performance in normoxia and hypoxia. Front Physiol. 2017;8:133. PubMed ID: 28337149 doi:10.3389/fphys.2017.00133

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jeukendrup A, Saris WH, Brouns F, Kester AD. A new validated endurance performance test. Med Sci Sports Exerc. 1996;28:266–270. PubMed ID: 8775164 doi:10.1097/00005768-199602000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–338. PubMed ID: 16055882 doi:10.1183/09031936.05.00034805

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–381. PubMed ID: 7154893

  • 21.

    Mahler DA, Horowitz MB. Perception of breathlessness during exercise in patients with respiratory disease. Med Sci Sports Exerc. 1994;26(9):1078–1081. PubMed ID: 7808239 doi:10.1249/00005768-199409000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Austin KG, Daigle KA, Patterson P, Cowman J, Chelland S, Haymes EM. Reliability of near-infrared spectroscopy for determining muscle oxygen saturation during exercise. Res Q Exerc Sport. 2005;76:440–449. PubMed ID: 16739682 doi:10.1080/02701367.2005.10599317

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Mickleborough TD, Stager JM, Chatham K, Lindley MR, Ionescu AA. Pulmonary adaptations to swim and inspiratory muscle training. Eur J Appl Physiol. 2008;103:635–646. PubMed ID: 18478253 doi:10.1007/s00421-008-0759-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Shei R, Lindley M, Chatham K, Mickleborough TD. Effect of flow-resistive inspiratory loading on pulmonary and respiratory function in sub-elite swimmers. J Sports Med Phys Fitness. 2016;56(4):392–398. PubMed ID: 25503711

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Shei R, Chapman RF, Gruber AH, Mickleborough TD. Inspiratory muscle training improves exercise capacity with thoracic load carriage. Pysiol Rep. 2018;6(3):e13558. doi:10.14814/phy2.13558

    • Search Google Scholar
    • Export Citation
  • 26.

    Lakens D. Calculating and reporting effect sizes to facilitation cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863. PubMed ID: 24324449 doi:10.3389/fpsyg.2013.00863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Foss JL, Constantini K, Mickleborough TD, Chapman RF. Short-term arrival strategies for endurance exercise performance at moderate altitude. J Appl Physiol. 2017;123:1258–1265. PubMed ID: 28818999 doi:10.1152/japplphysiol.00314.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Paton CD, Hopkins WG. Variation in performance of elite cyclists from race to race. Eur J Sport Sci. 2006;6(1):25–31. doi:10.1080/17461390500422796

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Illi SK, Held U, Frank I, Spengler CM. Effect of respiratory muscle training on exercise performance in healthy individuals: a systematic review and meta-analysis. Sports Med. 2012;42(8):707–724. PubMed ID: 22765281 doi:10.1007/BF03262290

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Thomas K, Stone MR, Thompson KG, St Clair Gibson A, Ansley L. Reproducibility of pacing strategy during simulated 20 km cycling time trials in well-trained cyclists. Eur J Appl Physiol. 2012;112:223–229. PubMed ID: 21533808 doi:10.1007/s00421-011-1974-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Martin BJ, Sparks KE, Zwillich CW, Weil JV. Low exercise ventilation in endurance athletes. Med Sci Sports Exerc. 1979;11(2):181–185. PubMed ID: 491878

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 248 248 48
Full Text Views 34 34 17
PDF Downloads 16 16 7