Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To analyze the diurnal variation of maximal fat oxidation (MFO) and the intensity that elicits MFO (Fatmax) in trained male athletes. Methods: A total of 12 endurance-trained male athletes age 24.7 (4.1) y participated in the study. The authors measured MFO, Fatmax, maximum oxygen uptake (VO2max), and VO2 percentage at ventilatory threshold 2 with a graded exercise protocol performed on 2 days separated by 1 wk. One test was performed in the morning and the other in the afternoon. The authors assessed the participants’ chronotype using the HÖME questionnaire. Results: MFO and Fatmax were greater in the afternoon than in the morning (Δ = 13%, P < .001 and Δ = 6%, P = .001, respectively), whereas there were similar VO2max and ventilatory threshold 2 in the morning, than in the afternoon test (Δ = 0.2%, P = .158 and Δ = 7%, P = .650, respectively). There was a strong positive association between VO2max and MFO in both morning and afternoon assessments (R2 = .783, P = .001 and R2 = .663, P < .001, respectively). Similarly, there was a positive association between VO2max and Fatmax in both morning and afternoon assessments (R2 = .406, P = .024 and R2 = .414, P = .026, respectively). Conclusion: MFO and Fatmax may partially explain some of the observed diurnal variation in the performance of endurance sports.

Amaro-Gahete, Jurado-Fasoli, Trivino, and De-la-O are with the Dept of Medical Physiology, School of Medicine, and Amaro-Gahete, Sanchez-Delgado, and Ruiz, the Dept of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain. Helge is with the Dept of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.

Amaro-Gahete (amarof@ugr.es) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Jeukendrup AE. Regulation of fat metabolism in skeletal muscle. Ann N Y Acad Sci. 2002;967:217235. PubMed ID: 12079850 doi:10.1111/j.1749-6632.2002.tb04278.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Jensen JRustad PIKolnes AJLai YC. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol. 2011;2:112. PubMed ID: 22232606 doi:10.3389/fphys.2011.00112

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Gonzalez JTFuchs CJBetts JAvan Loon LJ. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol Endocrinol Metab. 2016;311:E543E553.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Fernandez-Verdejo RBajpeyi SRavussin EGalgani JE. Metabolic flexibility to lipid availability during exercise is enhanced in individuals with high insulin sensitivity. Am J Physiol Endocrinol Metab. 2018;315(4):E715E722. PubMed ID: 29870678 doi:10.1152/ajpendo.00126.2018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Maunder EPlews DJKilding AE. Contextualising maximal fat oxidation during exercise: determinants and normative values. Front Physiol. 2018;9:599. doi:10.3389/fphys.2018.00599

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Barnes KRKilding AE. Strategies to improve running economy. Sports Med. 2015;45:3756. doi:10.1007/s40279-014-0246-y

  • 7.

    Drust BWaterhouse JAtkinson GEdwards BReilly T. Circadian rhythms in sports performance—an update. Chronobiol Int. 2005;22:2144. PubMed ID: 15865319 doi:10.1081/CBI-200041039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Teo WNewton MJMcGuigan MR. Circadian rhythms in exercise performance: implications for hormonal and muscular adaptation. J Sports Sci Med. 2011;10:600606.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kim HKKonishi MTakahashi Met al. Effects of acute endurance exercise performed in the morning and evening on inflammatory cytokine and metabolic hormone responses. PLoS One. 2015;10: e0137567.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Darvakh HNikbakht MShakerian SMousavian AS. Effect of circadian rhythm on peak of maximal fat oxidation on non-athletic men. Zahedan J Res Med Sci. 2014;16(6):811.

    • Search Google Scholar
    • Export Citation
  • 11.

    Mohebbi HAzizi M. Maximal fat oxidation at the different exercise intensity in obese and normal weight men in the morning and evening. J Hum Sport Exerc. 2011;6:4958. doi:10.4100/jhse.2011.61.06

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Venables MCAchten JJeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol. 2005;98:160167. PubMed ID: 15333616 doi:10.1152/japplphysiol.00662.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ponce González JGGuadalupe-Grau ARodríguez-González FGet al. Androgen receptor gene polymorphisms and maximal fat oxidation in healthy men. A longitudinal study. Nutr Hosp. 2017;34:10891098.

    • Search Google Scholar
    • Export Citation
  • 14.

    Harris JBenedict F. A biometric study of human basal metabolism. Proc Natl Acad Sci USA. 1918;4:370373. PubMed ID: 16576330 doi:10.1073/pnas.4.12.370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Horne JAOstberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4:97110. PubMed ID: 1027738

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Dandanell SPræst CBSøndergård SDet al. Determination of the exercise intensity that elicits maximal fat oxidation in individuals with obesity. Appl Physiol Nutr Metab. 2017;42:405412. PubMed ID: 28177732 doi:10.1139/apnm-2016-0518

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Amaro-Gahete FDe-la-O AJurado-Fasoli Let al. Exercise training as S-Klotho protein stimulator in sedentary healthy adults: Rationale, design, and methodology. Contemp Clin Trials Commun. 2018;11:1019. PubMed ID: 30023455 doi:10.1016/j.conctc.2018.05.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Amaro-Gahete FSanchez-Delgado GRuiz JR. Commentary: contextualising maximal fat oxidation during exercise: determinants and normative values. Front Physiol. 2018;9:1460. PubMed ID: 30405428 doi:10.3389/fphys.2018.01460

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lucía AHoyos JChicharro JL. The slow component of VO2 in professional cyclists. Br J Sports Med. 2000;34:367374. doi:10.1136/bjsm.34.5.367

  • 20.

    Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol. 1983;55:628634. PubMed ID: 6618956 doi:10.1152/jappl.1983.55.2.628

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Jocken JWEBlaak EE. Catecholamine-induced lipolysis in adipose tissue and skeletal muscle in obesity. Physiol Behav. 2008;94:219230. PubMed ID: 18262211 doi:10.1016/j.physbeh.2008.01.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Watt MJHowlett KFFebbraio MASpriet LLHargreaves M. Adrenaline increases skeletal muscle glycogenolysis, pyruvate dehydrogenase activation and carbohydrate oxidation during moderate exercise in humans. J Physiol. 2001;534:269278. PubMed ID: 11433007 doi:10.1111/j.1469-7793.2001.t01-1-00269.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Souissi NBessot NChamari KGauthier ASesboüé BDavenne D. Effect of time of day on aerobic contribution to the 30-s Wingate test performance. Chronobiol Int. 2007;24:739748. PubMed ID: 17701684 doi:10.1080/07420520701535811

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Croci IBorrani FByrne NMet al. Reproducibility of Fatmax and fat oxidation rates during exercise in recreationally trained males. PLoS One. 2014;9:e97930. PubMed ID: 24886715 doi:10.1371/journal.pone.0097930

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    van Loon LJGreenhaff PLConstantin-Teodosiu DSaris WHWagenmakers AJ. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536:295304. PubMed ID: 11579177 doi:10.1111/j.1469-7793.2001.00295.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Astorino TAEdmunds RMClark Aet al. Change in maximal fat oxidation in response to different regimes of periodized high-intensity interval training (HIIT). Eur J Appl Physiol. 2018;117:745755. PubMed ID: 28251399 doi:10.1007/s00421-017-3535-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Frandsen JVest SDLarsen SDela FHelge JW. Maximal fat oxidation is related to performance in an ironman triathlon. Int J Sports Med. 2017;38:975982. PubMed ID: 29050040 doi:10.1055/s-0043-117178

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Nordby PSaltin BHelge JW. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity? Scand J Med Sci Sports. 2006;16:209214. PubMed ID: 16643200 doi:10.1111/j.1600-0838.2005.00480.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Tan SWang JCao LGuo ZWang Y. Positive effect of exercise training at maximal fat oxidation intensity on body composition and lipid metabolism in overweight middle-aged women. Clin Physiol Funct Imaging. 2016;36:225230. PubMed ID: 27072372 doi:10.1111/cpf.12217

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Atkinson GTodd CReilly TWaterhouse J. Diurnal variation in cycling performance: influence of warm-up. J Sports Sci. 2005;23:321329. PubMed ID: 15966350 doi:10.1080/02640410410001729919

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 249 249 185
Full Text Views 16 16 6
PDF Downloads 10 10 6
Altmetric Badge
PubMed
Google Scholar
Cited By