Perspectives and Determinants for Training-Intensity Distribution in Elite Endurance Athletes

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Training-intensity distribution (TID), or the intensity of training and its distribution over time, has been considered an important determinant of the outcome of a training program in elite endurance athletes. The polarized and pyramidal TID, both characterized by a high amount of low-intensity training (below the first lactate or ventilatory threshold), but with different contributions of threshold training (between the first and second lactate or ventilatory threshold) and high-intensity training (above the second lactate or ventilatory threshold), have been reported most frequently in elite endurance athletes. However, the choice between these 2 TIDs is not straightforward. This article describes the historical, evolutionary, and physiological perspectives of the success of the polarized and pyramidal TID and proposes determinants that should be taken into account when choosing the most appropriate TID.

The authors are with the Dept of Movement and Sports Sciences, Ghent University, Ghent, Belgium. J.G. Bourgois and Boone are also with the Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium.

J.G. Bourgois (jan.bourgois@ugent.be) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Maughan RJGleeson M. The Biochemical Basis of Sports Performance. 2nd ed. New York, NY: Oxford University Press; 2010.

  • 2.

    Hawley JALundby CCotter JDBurke LM. Maximizing cellular adaptation to endurance exercise in skeletal muscle. Cell Metab. 2018;27(5):962976. PubMed ID: 29719234 doi:10.1016/j.cmet.2018.04.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mujika I. The influence of training characteristics and tapering on the adaptation in highly trained individuals: a review. Int J Sports Med. 1998;19:439446. doi:10.1055/s-2007-971942

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Robson-Ansley PJGleeson MAnsley L. Fatigue management in the preparation of Olympic athletes. J Sports Sci. 2009;27(13):14091420. PubMed ID: 19221925 doi:10.1080/02640410802702186

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Sperlich BHolmberg HC. The responses of elite athletes to exercise: an all-day, 24-h integrative view is required! Front Physiol. 2017;8:564. PubMed ID: 28855871 doi:10.3389/fphys.2017.00564

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Sanders DAbt GHesselink MKMyers TAkubat I. Methods of monitoring training load and their relationships to changes in fitness and performance in competitive road cyclists. Int J Sports Physiol Perform. 2017;12(5):668675. PubMed ID: 28095061 doi:10.1123/ijspp.2016-0454

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Stöggl TLSperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015;6:295. doi:10.3389/fphys.2015.00295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Seiler SKjerland GO. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports. 2006;16(1):4956. doi:10.1111/j.1600-0838.2004.00418.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276291. PubMed ID: 20861519 doi:10.1123/ijspp.5.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Tran JRice AJMain LCGastin PB. Profiling the training practices and performance of elite rowers. Int J Sports Physiol Perform. 2015;10(5):572580. PubMed ID: 25405491 doi:10.1123/ijspp.2014-0295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Rosenblat MAPerrotta ASVicenzino B. Polarized vs. threshold training intensity distribution on endurance sport performance: a systematic review and meta-analysis of randomized controlled trials [published online ahead of print May 30 2018]. J Strength Cond Res. doi:10.1519/JSC.0000000000002618

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kenneally MCasado ASantos-Concejero J. The effect of periodization and training intensity distribution on middle- and long-distance running performance: a systematic review. Int J Sports Physiol Perform. 2018;13(9):11141121. PubMed ID: 29182410 doi:10.1123/ijspp.2017-0327

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hellard PAvalos-Fernandes MLefort Get al. Elite swimmers’ training patterns in the 25 weeks prior to their season’s best performances: insights into periodization from a 20-years cohort. Front Physiol. 2019;10:116. doi:10.3389/fphys.2019.00363

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Pla RLe Meur YAubry AToussaint JFHellard P. Effects of a 6-week period of polarized or threshold training on performance and fatigue in elite swimmers. Int J Sports Physiol Perform. 2019;14(2):183189. PubMed ID: 30040002 doi:10.1123/ijspp.2018-0179

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Baldassarre RBonifazi MMeeusen RPiacentini MF. The road to Rio: a brief report of training-load distribution of open-water swimmers during the Olympic season. Int J Sports Physiol Perform. 2019;14(2):260264. PubMed ID: 30039988 doi:10.1123/ijspp.2017-0845

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Körner T. Talent identification and guidance scheme of the rowing association of the German Democratic Republic. In: FISA Coaching Development Programme Course—Level III. Lausanne, Switzerland: FISA; 1989:183193.

    • Search Google Scholar
    • Export Citation
  • 17.

    Körner T. Understanding of, and experiences with long term build-up programmes for high performance female and male rowers. Paper presented at: Olympic Solidarity Rowing Conference; October 12–15 1989. Canberra, Australia: Australian Rowing Council.

    • Export Citation
  • 18.

    Körner T. A comparative analysis of the GDR and Adam styles. In: FISA Coach. Lausanne, Switzerland: FISA; 1993:2765.

  • 19.

    Altenburg D. The German talent-identification and talent-development program. In: Perry HDieterle I eds. FISA’s Youth Junior Rowing and Sculling Guide. Lausanne, Switzerland: FISA; 1997.

    • Search Google Scholar
    • Export Citation
  • 20.

    Fiskerstrand ÅSeiler KS. Training and performance characteristics among Norwegian international rowers 1970–2001. Scand J Med Sci Sports. 2004;14(5):303310. doi:10.1046/j.1600-0838.2003.370.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hartmann UMader AHollmann W. Heart rate and lactate during endurance training programs in rowing and its relation to the duration of exercise by top elite rowers. In: FISA Coach. Lausanne, Switzerland: FISA; 1990:121141.

    • Search Google Scholar
    • Export Citation
  • 22.

    Seiler STønnessen E. Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience. 2009;13:3253.

    • Search Google Scholar
    • Export Citation
  • 23.

    Hydren JRCohen BS. Current scientific evidence for a polarized cardiovascular endurance training model. J Strength Cond Res. 2015;29(12):35233530. doi:10.1519/JSC.0000000000001197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Booth FWChakravarthy MVGordon SESpangenburg EE. Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J Appl Physiol. 2002;93(1):330. PubMed ID: 12070181 doi:10.1152/japplphysiol.00073.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    O’Keefe JHVogel RLavie CJCordain L. Achieving hunter-gatherer fitness in the 21st century: back to the future. Am J Med. 2010;123(12):10821086. doi:10.1016/j.amjmed.2010.04.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    O’Keefe JHVogel RLavie CJCordain L. Exercise like a hunter-gatherer: a prescription for organic physical fitness. Prog Cardiovasc Dis. 2011;53(6):471479. doi:10.1016/j.pcad.2011.03.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Esteve-Lanao JLucia A. Letters to the editor. Int J Sports Physiol Perform. 2010;5(4):431436. doi:10.1123/ijspp.5.4.431

  • 28.

    Voight BFKudaravalli SWen XPritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006;4(3):e72. PubMed ID: 16494531 doi:10.1371/journal.pbio.0040072

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Boullosa DAAbreu LVarela-Sanz AMujika I. Do Olympic athletes train as in the Paleolithic era? Sports Med. 2013;43(10):909917. doi:10.1007/s40279-013-0086-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Cordain LGotshall RWBoyd Eaton SBoyd Eaton S III. Physical activity, energy expenditure and fitness: an evolutionary perspective. Int J Sports Med. 1998;19(5):328335. PubMed ID: 9721056 doi:10.1055/s-2007-971926

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Eaton SBEaton SB. An evolutionary perspective on human physical activity: implications for health. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):153159. PubMed ID: 14527637 doi:10.1016/S1095-6433(03)00208-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Muñoz ISeiler SBautista JEspaña JLarumbe EEsteve-Lanao J. Does polarized training improve performance in recreational runners? Int J Sports Physiol Perform. 2014;9(2):265272. doi:10.1123/ijspp.2012-0350

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Carnes AJMahoney SE. Polarized versus high-intensity multimodal training in recreational runners. Int J Sports Physiol Perform. 2019;14(1):105112. doi:10.1123/ijspp.2018-0040

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Zinner CSchäfer Olstad DSperlich B. Mesocycles with different training intensity distribution in recreational runners. Med Sci Sports Exerc. 2018;50(8):16411648. PubMed ID: 29509644 doi:10.1249/MSS.0000000000001599

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Ruiz JRArteta DBuxens Aet al. Can we identify a power-oriented polygenic profile? J Appl Physiol. 2010;108(3):561566. PubMed ID: 20044471 doi:10.1152/japplphysiol.01242.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ordway GA. Molecular regulation of the training response: new techniques to study old questions. Eur J Sport Sci. 2001;1(2):17. doi:10.1080/17461390100071205

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Hood DATryon LDCarter HNKim YChen CCW. Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem J. 2016;473(15):22952314. PubMed ID: 27470593 doi:10.1042/BCJ20160009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Viru A. The mechanism of training effects: a hypothesis. Int J Sports Med. 1984;5(5):219227. doi:10.1055/s-2008-1025909

  • 39.

    Coffey VGHawley JA. The molecular bases of training adaptation. Sports Med. 2007;37(9):737763. doi:10.2165/00007256-200737090-00001

  • 40.

    Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(S2):110. doi:10.1111/j.1600-0838.2010.01184.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Bishop DJGranata CEynon N. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochim Biophys Acta. 2014;1840(4):12661275. doi:10.1016/j.bbagen.2013.10.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Esteve-Lanao JFoster CSeiler SLucia A. Impact of training intensity distribution on performance in endurance athletes. J Strength Cond Res. 2007;21(3):943949. PubMed ID: 17685689 doi:10.1519/R-19725.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Beneke RLeithauser RMOchentel O. Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform. 2011;6(1):824. doi:10.1123/ijspp.6.1.8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Neumann G. Leistungsstruktur in der Ausdauersportarten aus Sportmedizinischer Sicht. Leistungssport. 1990;20(3):1420.

  • 45.

    Bourgois JSteyaert ABoone J. Physiological and anthropometric progression in an international oarsman: a 15-year case study. Int J Sports Physiol Perform. 2014;9(4):723726. PubMed ID: 24085306 doi:10.1123/ijspp.2013-0267

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Gollnick PDArmstrong RBSaubert CW IVet al. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol. 1972;33(3):312319. PubMed ID: 4403464 doi:10.1152/jappl.1972.33.3.312

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Costill DLDaniels JEvans WFink WKrahenbuhl GSaltin B. Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol. 1976;40(2):149154. PubMed ID: 129449 doi:10.1152/jappl.1976.40.2.149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Roth WSchwanitz PPas PBauer P. Force-time characteristics of the rowing stroke and corresponding physiological muscle adaptations. Int J Sports Med. 1993;14:S32S34. doi:10.1055/s-2007-1021221

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Cope TCPinter MJ. The size principle: still working after all these years. Am J Physiol. 1995;10(6):280286. doi:10.1152/physiologyonline.1995.10.6.280

    • Search Google Scholar
    • Export Citation
  • 50.

    Holt NCWakeling JMBiewener AA. The effect of fast and slow motor unit activation on whole-muscle mechanical performance: the size principle may not pose a mechanical paradox. Proc R Soc B. 2014;281(1783):20140002. doi:10.1098/rspb.2014.0002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Hofmann PTschakert G. Intensity- and duration-based options to regulate endurance training. Front Physiol. 2017;8:337. PubMed ID: 28596738 doi:10.3389/fphys.2017.00337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 1169 1169 389
Full Text Views 75 75 20
PDF Downloads 82 82 19
Altmetric Badge
PubMed
Google Scholar