No Improvement in Running Time to Exhaustion at 100% VO2max in Recreationally Active Male Runners With a Preexercise Single-Carbohydrate Mouth Rinse

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Background: Carbohydrate (CHO) mouth rinse has been used as an ergogenic strategy due to its central effect; however, the effects of this intervention during short-duration high-intensity exercises are not fully understood. Purpose: To investigate the effect of CHO mouth rinse on time to exhaustion in a short-duration high-intensity exercise performed on a treadmill. Methods: A randomized double-blind, placebo-controlled, crossover study was conducted with 10 (24.1 [4.3] y) recreationally active male runners. The protocol consisted of a warm-up at 65% of VO2max for 5 min followed by 3 min passive rest. At the end of this rest period, the individuals performed their mouth rinse either with CHO (maltodextrin, 6%) or with placebo (industrialized noncaloric juice with the same taste). Immediately after mouth rinse, the subjects ran at velocity equivalent to 100% of individual VO2max until voluntary exhaustion. The perceived effort was obtained through a Borg scale. Blood lactate was quantified before and after the protocol, and heart rate was evaluated during the protocol. Results: No difference was found (P = .90) in time to exhaustion between placebo (193.9 [46.5] s) and CHO mouth rinse (195.1 [51.8] s). Blood lactate, heart rate, and perception of effort increased in both groups, but with no differences (all variables, P > .05) between groups. Conclusion: The findings showed that a preexercise single-CHO mouth rinse was ineffective to improve running time to exhaustion at velocity equivalent to 100% VO2max on a treadmill in recreationally active male runners.

Rossato, Fernandes, Vieira, de Branco, Nahas, and de Oliveira are with the School of Medicine, and Puga, the Laboratory of Cardiorespiratory and Metabolic Physiology, Federal University of Uberlandia (UFU), Uberlândia, Brazil.

de Oliveira (erick_po@yahoo.com.br) is corresponding author.
  • 1.

    Naderi A, de Oliveira EP, Ziegenfuss TN, Willems MT. Timing, optimal dose and intake duration of dietary supplements with evidence-based use in sports nutrition. J Exerc Nutrition Biochem. 2016;20:1–12. PubMed ID: 28150472 doi:10.20463/jenb.2016.0031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Anantaraman R, Carmines AA, Gaesser GA, Weltman A. Effects of carbohydrate supplementation on performance during 1 hour of high-intensity exercise. Int J Sports Med. 1995;16:461–465. PubMed ID: 8550255 doi:10.1055/s-2007-973038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Jeukendrup A, Brouns F, Wagenmakers AJ, Saris WH. Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance. Int J Sports Med. 1997;18:125–129. PubMed ID: 9081269 doi:10.1055/s-2007-972607

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc. 2004;36:2107–2111. PubMed ID: 15570147 doi:10.1249/01.MSS.0000147585.65709.6F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    de Oliveira EP, Burini RC. Carbohydrate-dependent, exercise-induced gastrointestinal distress. Nutrients. 2014;6:4191–4199. PubMed ID: 25314645 doi:10.3390/nu6104191

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;587:1779–1794. PubMed ID: 19237430 doi:10.1113/jphysiol.2008.164285

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Jeukendrup A. A step towards personalized sports nutrition: carbohydrate intake during exercise. Sports Med. 2014;44(Suppl 1):25–33. doi:10.1007/s40279-014-0148-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Kringelbach ML. Food for thought: hedonic experience beyond homeostasis in the human brain. Neuroscience. 2004;126:807–819. PubMed ID: 15207316 doi:10.1016/j.neuroscience.2004.04.035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Rollo I, Cole M, Miller R, Williams C. Influence of mouth rinsing a carbohydrate solution on 1-h running performance. Med Sci Sports Exerc. 2010;42:798–804. PubMed ID: 19952850 doi:10.1249/MSS.0b013e3181bac6e4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pottier A, Bouckaert J, Gilis W, Roels T, Derave W. Mouth rinse but not ingestion of a carbohydrate solution improves 1-h cycle time trial performance. Scand J Med Sci Sports. 2010;20:105–111. PubMed ID: 19000099 doi:10.1111/j.1600-0838.2008.00868.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Jeukendrup AE. Oral carbohydrate rinse: placebo or beneficial? Curr Sports Med Rep. 2013;12:222–227. PubMed ID: 23851408 doi:10.1249/JSR.0b013e31829a6caa

  • 12.

    James RM, Ritchie S, Rollo I, James LJ. No dose response effect of carbohydrate mouth rinse on cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2017;27:25–31. PubMed ID: 27616732 doi:10.1123/ijsnem.2016-0111

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cherif A, Meeusen R, Ryu J, et al. Repeated-sprints exercise in daylight fasting: carbohydrate mouth rinsing does not affect sprint and reaction time performance. Biol Sport. 2018;35(3):237–244. PubMed ID: 30449941 doi:10.5114/biolsport.2018.77824

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Dolan P, Witherbee KE, Peterson KM, Kerksick CM. Effect of carbohydrate, caffeine, and carbohydrate + caffeine mouth rinsing on intermittent running performance in collegiate male lacrosse athletes. J Strength Cond Res. 2017;31:2473–2479. PubMed ID: 28825605 doi:10.1519/JSC.0000000000001819

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Chong E, Guelfi KJ, Fournier PA. Effect of a carbohydrate mouth rinse on maximal sprint performance in competitive male cyclists. J Sci Med Sport. 2011;14:162–167. PubMed ID: 20932798 doi:10.1016/j.jsams.2010.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Pribyslavska V, Scudamore EM, Johnson SL, et al. Influence of carbohydrate mouth rinsing on running and jumping performance during early morning soccer scrimmaging. Eur J Sport Sci. 2016;16:441–447. PubMed ID: 25790746 doi:10.1080/17461391.2015.1020345

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Phillips SM, Findlay S, Kavaliauskas M, Grant MC. The influence of serial carbohydrate mouth rinsing on power output during a cycle sprint. J Sports Sci Med. 2014;13:252–258. PubMed ID: 24790476

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–381. PubMed ID: 7154893

  • 19.

    Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med. 1985;6:197–201. PubMed ID: 4044103 doi:10.1055/s-2008-1025839

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Midgley AW, McNaughton LR, Polman R, Marchant D. Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Med. 2007;37:1019–1028. PubMed ID: 18027991 doi:10.2165/00007256-200737120-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lohman TG, Roche AF, Martorell R. Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics; 1988.

  • 22.

    Reis BCA, de Branco FMS, Pessoa DF, et al. Phase angle is positively associated with handgrip strength in hospitalized in dividuals. Top Clin Nutr. 2018;33:127–133. doi:10.1097/TIN.0000000000000135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Segal KR, Van Loan M, Fitzgerald PI, Hodgdon JA, Van Itallie TB. Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. Am J Clin Nutr. 1988;47:7–14. PubMed ID: 3337041 doi:10.1093/ajcn/47.1.7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Janssen I, Heymsfield SB, Baumgartner RN, Ross R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol. 2000;89:465–471. doi:10.1152/jappl.2000.89.2.465

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Erlbaum.

  • 26.

    Gant N, Stinear CM, Byblow WD. Carbohydrate in the mouth immediately facilitates motor output. Brain Res. 2010;1350:151–158. PubMed ID: 20388497 doi:10.1016/j.brainres.2010.04.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bataineh MF, Al-Nawaiseh AM, Abu Altaieb MH, Bellar DM, Hindawi OS, Judge LW. Impact of carbohydrate mouth rinsing on time to exhaustion during Ramadan: a randomized controlled trial in Jordanian men. Eur J Sport Sci. 2018;18:357–366. PubMed ID: 29364063 doi:10.1080/17461391.2017.1420236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Jeukendrup A, Saris WH, Brouns F, Kester AD. A new validated endurance performance test. Med Sci Sports Exerc. 1996;28:266–270. PubMed ID: 8775164 doi:10.1097/00005768-199602000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Finsterer J. Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet Disord. 2012;13:218. PubMed ID: 23136874 doi:10.1186/1471-2474-13-218

  • 30.

    Meeusen R, Roelands B. Fatigue: is it all neurochemistry? Eur J Sport Sci. 2018;18:37–46. PubMed ID: 28317427 doi:10.1080/17461391.2017.1296890

  • 31.

    Spencer MR, Gastin PB. Energy system contribution during 200- to 1500-m running in highly trained athletes. Med Sci Sports Exerc. 2001;33:157–162. PubMed ID: 11194103 doi:10.1097/00005768-200101000-00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 214 214 42
Full Text Views 30 30 9
PDF Downloads 16 16 1