Predicting On-Ice Skating Using Laboratory- and Field-Based Assessments in College Ice Hockey Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To determine the predictability of common laboratory/field and novel laboratory tests for skating characteristics in Canadian college ice hockey players. Methods: A total of 18 male hockey players from the university’s varsity hockey team age 20–25 y (height 180.7 [6.4] cm, weight 87.1 [6.7] kg, and body fat 16.2% [4.0%]) completed common laboratory-/field-based testing (ie, standing long jump, vertical jump, off-ice proagility, V˙O2max, Wingate), novel laboratory-based testing (ie, Biodex dynamometer, dual-energy X-ray absorptiometry scan), and on-ice testing (ie, 30-m forward sprint, 30-m backward sprint, on-ice proagility). Results: Pearson correlations and stepwise regression revealed relationships between on-ice forward sprint and 4 off-ice tests (Wingate relative peak power [r = −.62, P < .01], standing long jump [r = −.45, P < .05], off-ice proagility left [r = .51, P < .05], and vertical jump impulse [r = .60, P < .01]). On-ice proagility left was correlated with off-ice proagility left (r = .47, P < .05), Wingate relative peak power (r = −.55, P < .01), and vertical jump impulse (r = −.53, P < .05). The 30-m backward skating test and the on-ice proagility right were not correlated with any off-ice test. Conclusion: Commonly used laboratory/field tests are effective in predicting 2 important primary abilities in ice hockey.

The authors are with McGill Health and Fitness Promotion Lab, Dept of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.

Chiarlitti (nathan.chiarlitti@mail.mcgill.ca) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Green HHouston M. Effect of a season of ice hockey on energy capacities and associated functions. Med Sci Sports. 1974;7(4):299303.

    • Search Google Scholar
    • Export Citation
  • 2.

    Montgomery DL. Physiology of ice hockey. Sports Med. 1988;5(2):99126. PubMed ID: 3281210 doi:10.2165/00007256-198805020-00003

  • 3.

    Twist PRhodes T. Exercise physiology: the bioenergetic and physiological demands of ice hockey. Strength Cond J. 1993;15(5):6870. doi:10.1519/0744-0049(1993)015<0068:TBAPDO>2.3.CO;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Gilenstam KMThorsen KHenriksson-Larsén KB. Physiological correlates of skating performance in women’s and men’s ice hockey. J Strength Cond Res. 2011;25(8):21332142. PubMed ID: 21785292 doi:10.1519/JSC.0b013e3181ecd072

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bracko MRGeorge JD. Prediction of ice skating performance with off-ice testing in women’s ice hockey players. J Strength Cond Res. 2001;15(1):116122. PubMed ID: 11708693

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Nightingale SCMiller STurner A. The usefulness and reliability of fitness testing protocols for ice hockey players: a literature review. J Strength Cond Res. 2013;27(6):17421748. PubMed ID: 22996029 doi:10.1519/JSC.0b013e3182736948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Chiarlitti NADelisle-Houde PReid REKennedy CAndersen RE. Importance of body composition in the national hockey league combine physiological assessments. J Strength Cond Res. 2018;32(11):31353142. PubMed ID: 29065054 doi:10.1519/JSC.0000000000002309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Henriksson TVescovi JDFjellman-Wiklund AGilenstam K. Laboratory-and field-based testing as predictors of skating performance in competitive-level female ice hockey. Open Access J Sports Med. 2016;7:8188. PubMed ID: 27574474 doi:10.2147/OAJSM.S109124

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Janot JMBeltz NMDalleck LD. Multiple off-ice performance variables predict on-ice skating performance in male and female division III ice hockey players. J Sports Sci Med. 2015;14(3):522. PubMed ID: 26336338

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Burr JFJamnik VKDogra SGledhill N. Evaluation of jump protocols to assess leg power and predict hockey playing potential. J Strength Cond Res. 2007;21(4):1139. PubMed ID: 18076264

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Baechle TREarle RW. Essentials of Strength Training and Conditioning. Champaign, IL: Human Kinetics; 2008.

  • 12.

    Twist PRhodes T. Exercise physiology: a physiological analysis of ice hockey positions. Strength Cond J. 1993;15(6):4446. doi:10.1519/0744-0049(1993)015<0044:APAOIH>2.3.CO;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Stewart PFTurner ANMiller SC. Reliability, factorial validity, and interrelationships of five commonly used change of direction speed tests. Scand J Med Sci Sports. 2014;24(3):500506. PubMed ID: 23176602 doi:10.1111/sms.12019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Wilson RW IISnyder ACDorman JC. Analysis of seated and standing triple Wingate tests. J Strength Cond Res. 2009;23(3):868873. PubMed ID: 19387391 doi:10.1519/JSC.0b013e31819d0932

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Johnston M. 2016 NHL combine need to know: what the players will go through. 2016. Sportsnet. https://www.sportsnet.ca/hockey/nhl/2016-nhl-combine-faq-need-know/

    • Search Google Scholar
    • Export Citation
  • 16.

    Feiring DCEllenbecker TSDerscheid GL. Test-retest reliability of the Biodex isokinetic dynamometer. J Orthop Sports Phys Ther. 1990;11(7):298300. PubMed ID: 18796902 doi:10.2519/jospt.1990.11.7.298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bray GABouchard C. Handbook of Obesity: Clinical Applications. Vol 2. Boca Raton, FL: CRC Press; 2014.

  • 18.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 19.

    Behm DGWahl MJButton DCPower KEAnderson KG. Relationship between hockey skating speed and selected performance measures. J Strength Cond Res. 2005;19(2):326331. PubMed ID: 15903370

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Diakoumis KBracko M. Prediction of skating performance with off-ice testing in deaf ice hockey players. Med Sci Sports Exerc. 1998;30(5):272. doi:10.1097/00005768-199805001-01546

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Potteiger JASmith DLMaier MLFoster TS. Relationship between body composition, leg strength, anaerobic power, and on-ice skating performance in Division I men’s hockey athletes. J Strength Cond Res. 2010;24(7):17551762. PubMed ID: 20543730 doi:10.1519/JSC.0b013e3181e06cfb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Farlinger CMKruisselbrink LDFowles JR. Relationships to skating performance in competitive hockey players. J Strength Cond Res. 2007;21(3):915922. PubMed ID: 17685681

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Greer NSerfass RPicconatto WBlatherwick J. The effects of a hockey-specific training program on performance of Bantam players. Can J Sport Sci. 1992;17(1):6569. PubMed ID: 1322772

    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 94 94 53
Full Text Views 24 24 12
PDF Downloads 20 20 12
Altmetric Badge
PubMed
Google Scholar