Predicting On-Ice Skating Using Laboratory- and Field-Based Assessments in College Ice Hockey Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To determine the predictability of common laboratory/field and novel laboratory tests for skating characteristics in Canadian college ice hockey players. Methods: A total of 18 male hockey players from the university’s varsity hockey team age 20–25 y (height 180.7 [6.4] cm, weight 87.1 [6.7] kg, and body fat 16.2% [4.0%]) completed common laboratory-/field-based testing (ie, standing long jump, vertical jump, off-ice proagility, V˙O2max, Wingate), novel laboratory-based testing (ie, Biodex dynamometer, dual-energy X-ray absorptiometry scan), and on-ice testing (ie, 30-m forward sprint, 30-m backward sprint, on-ice proagility). Results: Pearson correlations and stepwise regression revealed relationships between on-ice forward sprint and 4 off-ice tests (Wingate relative peak power [r = −.62, P < .01], standing long jump [r = −.45, P < .05], off-ice proagility left [r = .51, P < .05], and vertical jump impulse [r = .60, P < .01]). On-ice proagility left was correlated with off-ice proagility left (r = .47, P < .05), Wingate relative peak power (r = −.55, P < .01), and vertical jump impulse (r = −.53, P < .05). The 30-m backward skating test and the on-ice proagility right were not correlated with any off-ice test. Conclusion: Commonly used laboratory/field tests are effective in predicting 2 important primary abilities in ice hockey.

The authors are with McGill Health and Fitness Promotion Lab, Dept of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.

Chiarlitti (nathan.chiarlitti@mail.mcgill.ca) is corresponding author.
  • 1.

    Green H, Houston M. Effect of a season of ice hockey on energy capacities and associated functions. Med Sci Sports. 1974;7(4):299303.

    • Search Google Scholar
    • Export Citation
  • 2.

    Montgomery DL. Physiology of ice hockey. Sports Med. 1988;5(2):99126. PubMed ID: 3281210 doi:10.2165/00007256-198805020-00003

  • 3.

    Twist P, Rhodes T. Exercise physiology: the bioenergetic and physiological demands of ice hockey. Strength Cond J. 1993;15(5):6870. doi:10.1519/0744-0049(1993)015<0068:TBAPDO>2.3.CO;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Gilenstam KM, Thorsen K, Henriksson-Larsén KB. Physiological correlates of skating performance in women’s and men’s ice hockey. J Strength Cond Res. 2011;25(8):21332142. PubMed ID: 21785292 doi:10.1519/JSC.0b013e3181ecd072

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bracko MR, George JD. Prediction of ice skating performance with off-ice testing in women’s ice hockey players. J Strength Cond Res. 2001;15(1):116122. PubMed ID: 11708693

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Nightingale SC, Miller S, Turner A. The usefulness and reliability of fitness testing protocols for ice hockey players: a literature review. J Strength Cond Res. 2013;27(6):17421748. PubMed ID: 22996029 doi:10.1519/JSC.0b013e3182736948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Chiarlitti NA, Delisle-Houde P, Reid RE, Kennedy C, Andersen RE. Importance of body composition in the national hockey league combine physiological assessments. J Strength Cond Res. 2018;32(11):31353142. PubMed ID: 29065054 doi:10.1519/JSC.0000000000002309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Henriksson T, Vescovi JD, Fjellman-Wiklund A, Gilenstam K. Laboratory-and field-based testing as predictors of skating performance in competitive-level female ice hockey. Open Access J Sports Med. 2016;7:8188. PubMed ID: 27574474 doi:10.2147/OAJSM.S109124

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Janot JM, Beltz NM, Dalleck LD. Multiple off-ice performance variables predict on-ice skating performance in male and female division III ice hockey players. J Sports Sci Med. 2015;14(3):522. PubMed ID: 26336338

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Burr JF, Jamnik VK, Dogra S, Gledhill N. Evaluation of jump protocols to assess leg power and predict hockey playing potential. J Strength Cond Res. 2007;21(4):1139. PubMed ID: 18076264

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Baechle TR, Earle RW. Essentials of Strength Training and Conditioning. Champaign, IL: Human Kinetics; 2008.

  • 12.

    Twist P, Rhodes T. Exercise physiology: a physiological analysis of ice hockey positions. Strength Cond J. 1993;15(6):4446. doi:10.1519/0744-0049(1993)015<0044:APAOIH>2.3.CO;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Stewart PF, Turner AN, Miller SC. Reliability, factorial validity, and interrelationships of five commonly used change of direction speed tests. Scand J Med Sci Sports. 2014;24(3):500506. PubMed ID: 23176602 doi:10.1111/sms.12019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Wilson RW II, Snyder AC, Dorman JC. Analysis of seated and standing triple Wingate tests. J Strength Cond Res. 2009;23(3):868873. PubMed ID: 19387391 doi:10.1519/JSC.0b013e31819d0932

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Johnston M. 2016 NHL combine need to know: what the players will go through. 2016. Sportsnet. https://www.sportsnet.ca/hockey/nhl/2016-nhl-combine-faq-need-know/

    • Search Google Scholar
    • Export Citation
  • 16.

    Feiring DC, Ellenbecker TS, Derscheid GL. Test-retest reliability of the Biodex isokinetic dynamometer. J Orthop Sports Phys Ther. 1990;11(7):298300. PubMed ID: 18796902 doi:10.2519/jospt.1990.11.7.298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bray GA, Bouchard C. Handbook of Obesity: Clinical Applications. Vol 2. Boca Raton, FL: CRC Press; 2014.

  • 18.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 19.

    Behm DG, Wahl MJ, Button DC, Power KE, Anderson KG. Relationship between hockey skating speed and selected performance measures. J Strength Cond Res. 2005;19(2):326331. PubMed ID: 15903370

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Diakoumis K, Bracko M. Prediction of skating performance with off-ice testing in deaf ice hockey players. Med Sci Sports Exerc. 1998;30(5):272. doi:10.1097/00005768-199805001-01546

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Potteiger JA, Smith DL, Maier ML, Foster TS. Relationship between body composition, leg strength, anaerobic power, and on-ice skating performance in Division I men’s hockey athletes. J Strength Cond Res. 2010;24(7):17551762. PubMed ID: 20543730 doi:10.1519/JSC.0b013e3181e06cfb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Farlinger CM, Kruisselbrink LD, Fowles JR. Relationships to skating performance in competitive hockey players. J Strength Cond Res. 2007;21(3):915922. PubMed ID: 17685681

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Greer N, Serfass R, Picconatto W, Blatherwick J. The effects of a hockey-specific training program on performance of Bantam players. Can J Sport Sci. 1992;17(1):6569. PubMed ID: 1322772

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 447 448 14
Full Text Views 48 48 0
PDF Downloads 33 33 0