Limiting the Rise in Core Temperature During a Rugby Sevens Warm-Up With an Ice Vest

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To determine how a cooling vest worn during a warm-up could influence selected performance (countermovement jump [CMJ]), physical (global positioning system [GPS] metrics), and psychophysiological (body temperature and perceptual) variables. Methods: In a randomized, crossover design, 12 elite male World Rugby Sevens Series athletes completed an outdoor (wet bulb globe temperature 23–27°C) match-specific externally valid 30-min warm-up wearing a phase-change cooling vest (VEST) and without (CONTROL), on separate occasions 7 d apart. CMJ was assessed before and after the warm-up, with GPS indices and heart rate monitored during the warm-ups, while core temperature (Tc; ingestible telemetric pill; n = 6) was recorded throughout the experimental period. Measures of thermal sensation (TS) and thermal comfort (TC) was obtained pre-warm-up and post-warm-up, with rating of perceived exertion (RPE) taken post-warm-ups. Results: Athletes in VEST had a lower ΔTc (mean [SD]: VEST = 1.3°C [0.1°C]; CONTROL = 2.0°C [0.2°C]) from pre-warm-up to post-warm-up (effect size; ±90% confidence limit: −1.54; ±0.62) and Tc peak (mean [SD]: VEST = 37.8°C [0.3°C]; CONTROL = 38.5°C [0.3°C]) at the end of the warm-up (−1.59; ±0.64) compared with CONTROL. Athletes in VEST demonstrated a decrease in ΔTS (−1.59; ±0.72) and ΔTC (−1.63; ±0.73) pre-warm-up to post-warm-up, with a lower RPE post-warm-up (−1.01; ±0.46) than CONTROL. Changes in CMJ and GPS indices were trivial between conditions (effect size < 0.2). Conclusions: Wearing the vest prior to and during a warm-up can elicit favorable alterations in physiological (Tc) and perceptual (TS, TC, and RPE) warm-up responses, without compromising the utilized warm-up characteristics or physical-performance measures.

Taylor is with Athlete Health and Performance Research Center, Qatar Orthopedic and Sports Medicine Hospital, Aspetar, Doha, Qatar, and the School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom. Stevens is with the School of Health and Human Sciences and the Centre for Athlete Development, Experience & Performance, Southern Cross University, Coffs Harbour, NSW, Australia. Thornton is with La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, VIC, Australia. Poulos is with Australian Rugby Union, Sydney, NSW, Australia. Chrismas is with the Sport Science Program, College of Arts and Science, Qatar University, Doha, Qatar.

Taylor (Lee.Taylor@aspetar.com) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Taylor LThornton HLumley NStevens CJ. Alterations in core temperature during world rugby sevens series tournaments in temperate and warm environments. Eur J Sport Sci. 2018;19(4):432441. doi:10.1080/17461391.1746201811527949

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Girard OBrocherie FBishop DJ. Sprint performance under heat stress: a review. Scand J Med Sci Sports. 2015;25(suppl 1):7989. doi:10.1111/sms.12437

  • 3.

    Aldous JWChrismas BCAkubat IDascombe BAbt GTaylor L. Hot and hypoxic environments inhibit simulated soccer performance and exacerbate performance decrements when combined. Front Physiol. 2016;6:421. PubMed ID: 26793122 doi:10.3389/fphys.2015.00421

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Ross AGill NCronin JMalcata R. The relationship between physical characteristics and match performance in rugby sevens. Eur J Sport Sci. 2015;15(6):565571. PubMed ID: 25868066 doi:10.1080/17461391.2015.1029983

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Mitchell JAPumpa KLPyne DB. Responses of lower-body power and match running demands following long-haul travel in international rugby sevens players. J Strength Cond Res. 2017;31(3):686695. PubMed ID: 27359207 doi:10.1519/JSC.0000000000001526

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Couderc AThomas CLacome Met al. Movement patterns and metabolic responses during an international rugby sevens tournament. Int J Sports Physiol Perform. 2017;12(7):901907. doi:10.1123/ijspp.2016-0313

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Schuster JHowells DRobineau Jet al. Physical-preparation recommendations for elite rugby sevens performance. Int J Sports Physiol Perform. 2018;13(3):255267. doi:10.1123/ijspp.2016-0728

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bongers CCThijssen DHVeltmeijer MTHopman MTEijsvogels TM. Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review. Br J Sports Med. 2015;49(6):377384. PubMed ID: 24747298 doi:10.1136/bjsports-2013-092928

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Bongers CCWGHopman MTEEijsvogels TMH. Cooling interventions for athletes: an overview of effectiveness, physiological mechanisms, and practical considerations. Temperature. 2017;4(1):6078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Stevens CJMauger ARHassmen PTaylor L. Endurance performance is influenced by perceptions of pain and temperature: theory, applications and safety considerations. Sports Med. 2018;48(3):525537. PubMed ID: 29270865 doi:10.1007/s40279-017-0852-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Stevens CJTaylor LDascombe BJ. Cooling during exercise: an overlooked strategy for enhancing endurance performance in the heat. Sports Med. 2017;47(5):829841. PubMed ID: 27670904 doi:10.1007/s40279-016-0625-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Tyler CJSunderland CCheung SS. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: a meta-analysis. Br J Sports Med. 2015;49(1):713. PubMed ID: 23945034 doi:10.1136/bjsports-2012-091739

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Aldous JWFChrismas BCRAkubat IStringer CAAbt GTaylor L. Mixed-methods pre-match cooling improves simulated soccer performance in the heat. Eur J Sport Sci. 2019;19(2):156165.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Patterson SMUdermann BEDoberstein STReineke DM. The effects of cold whirlpool on power, speed, agility, and range of motion. J Sports Sci Med. 2008;7(3):387394. PubMed ID: 24149907

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Richendollar MLDarby LABrown TM. Ice bag application, active warm-up, and 3 measures of maximal functional performance. J Athl Train. 2006;41(4):364370. PubMed ID: 17273459

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Webster JHolland EJSleivert GLaing RMNiven BE. A light-weight cooling vest enhances performance of athletes in the heat. Ergonomics. 2005;48(7):821837. PubMed ID: 16076740 doi:10.1080/00140130500122276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Byrne CLim CL. The ingestible telemetric body core temperature sensor: a review of validity and exercise applications. Br J Sports Med. 2007;41(3):126133. PubMed ID: 17178778 doi:10.1136/bjsm.2006.026344

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Travers GJNichols DSFarooq ARacinais SPeriard JD. Validation of an ingestible temperature data logging and telemetry system during exercise in the heat. Temperature. 2016;3(2):208219. doi:10.1080/23328940.2016.1171281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Bongers CDaanen HAMBogerd CPHopman MTEEijsvogels TMH. Validity, reliability, and inertia of four different temperature capsule systems. Med Sci Sports Exerc. 2018;50(1):169175. PubMed ID: 28816921 doi:10.1249/MSS.0000000000001403

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Koklu YArslan YAlemdaroglu UDuffield R. Accuracy and reliability of SPI ProX global positioning system devices for measuring movement demands of team sports. J Sports Med Phys Fitness. 2015;55(5):471477. PubMed ID: 25303067

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Young AJSawka MNEpstein YDecristofano BPandolf KB. Cooling different body surfaces during upper and lower body exercise. J Appl Physiol. 1987;63(3):12181223. doi:10.1152/jappl.1987.63.3.1218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 23.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Grafen GHails R. Modern Statistics for the Life Sciences. New York, NY: Oxford University Press; 2002:153184.

  • 25.

    West BTWelch KBGalecki AT. Linear Mixed Models: A Practical Guide Using Statistical Software. 2nd ed. Abingdon, UK: Taylor & Francis; 2014.

  • 26.

    Hurvich CMTsai CL. Model selection for extended quasi-likelihood models in small samples. Biometrics. 1995;51(3):10771084. PubMed ID: 7548692 doi:10.2307/2533006

  • 27.

    Hommel G. A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika. 1988;75(2):383386. doi:10.1093/biomet/75.2.383

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Stevens CJBennett KJSculley DVCallister RTaylor LDascombe BJ. A comparison of mixed-method cooling interventions on preloaded running performance in the heat. J Strength Cond Res. 2017;31(3):620629. PubMedID: 27379961 doi:10.1519/JSC.0000000000001532

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Stevens CJKittel ASculley DVCallister RTaylor LDascombe BJ. Running performance in the heat is improved by similar magnitude with pre-exercise cold-water immersion and mid-exercise facial water spray. J Sports Sci. 2017;35(8):798805. PubMed ID: 27267974 doi:10.1080/02640414.2016.1192294

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Stevens CJThoseby BSculley DVCallister RTaylor LDascombe BJ. Running performance and thermal sensation in the heat are improved with menthol mouth rinse but notice slurry ingestion. Scand J Med Sci Sports. 2016;26(10):12091216. PubMed ID: 26408395 doi:10.1111/sms.12555

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 114 114 56
Full Text Views 30 30 24
PDF Downloads 13 13 11
Altmetric Badge
PubMed
Google Scholar
Cited By