Effects of Playing Surface on Physical, Physiological, and Perceptual Responses to a Repeated-Sprint Ability Test: Natural Grass Versus Artificial Turf

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: The effect of playing surface on physical performance during a repeated-sprint ability (RSA) test and the mechanisms for any potential playing-surface-dependent effects on RSA performance are equivocal. The purpose of this study was to investigate the effect of natural grass (NG) and artificial turf (AT) on physical performance, ratings of perceived exertion, feeling scale, and blood biomarkers related to anaerobic contribution (blood lactate [Lac]), muscle damage (creatine kinase and lactate dehydrogenase), inflammation (C-reactive protein), and immune function (neutrophils [NEU], lymphocytes [LYM], and monocytes) in response to an RSA test. Methods: A total of 9 male professional football players from the same regional team completed 2 sessions of RSA testing (6 × 30 s interspersed with a 35-s recovery) on NG and AT in a randomized order. During the RSA test, total (sum of distances) and peak (highest distance covered in a single repetition) distance covered were determined using a measuring tape, and the decrement in sprinting performance from the first to the last repetition was calculated. Before and after the RSA test, ratings of perceived exertion, feeling scale, and Lac, creatine kinase, lactate dehydrogenase, C-reactive protein, NEU, LYM, and monocytes were recorded in both NG and AT conditions. Results: Although physical performance declined during the RSA blocks on both surfaces (P = .001), the distance covered declined more on NG (15%) than on AT (11%; P = .04; effect size [ES] = −0.34; 95% confidence interval [CI], −1.21 to 0.56) with a higher total distance covered (+6% [2%]) on AT (P = .018; ES = 1.15; 95% CI, 0.16 to 2.04). In addition, lower ratings of perceived exertion (P = .04; ES = −0.49; 95% CI, −1.36 to 0.42), Lac, NEU, and LYM (P = .03; ES = −0.80; 95% CI, −1.67 to 0.14; ES = −0.16; 95% CI, −1.03 to 0.72; and ES = −0.94; 95% CI, −1.82 to 0.02, respectively) and more positive feelings (P = .02; ES = 0.81; 95% CI, −0.13 to 1.69) were observed after the RSA test performed on AT than on NG. No differences were observed in the remaining physical and blood markers. Conclusion: These findings suggest that RSA performance is enhanced on AT compared with NG. This effect was accompanied by lower fatigue perception and Lac, NEU, and LYM and a more pleasurable feeling. These observations might have implications for physical performance in intermittent team-sport athletes who train and compete on different playing surfaces.

Ammar, Ayadi, and Turki are with the Laboratory of Biochemistry, CHU Habib Bourguiba, and Hammouda, Trabelsi, Merzigui, El Abed, Chtourou, and Gharb, the High Inst of Sport and Physical Education of Sfax, Sfax University, Sfax, Tunisia. Ammar and Hökelmann are with the Inst of Sport Science, Otto von Guericke University, Magdeburg, Germany. Bailey is with the School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom. Driss is with the Research Center on Sport and Movement (EA 2931), University of Paris Nanterre, Nanterre, France. Chtourou is also with Physical Activity: Sport and Health, National Observatory of Sport, Tunis, Tunisia.

Ammar (ammar.achraf@ymail.com) is corresponding author.
  • 1.

    Morcillo JA, Jimenez-Reyes P, Cuadrado-Penafiel V, Lozano E, Ortega-Becerra M, Párraga J. Relationships between repeated sprint ability, mechanical parameters, and blood metabolites in professional soccer players. J Strength Cond Res. 2015;29(6):1673–1682. PubMed ID: 25463691 doi:10.1519/JSC.0000000000000782

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Sterzing T, Muller C, Hennig EM, Milani TL. Actual and perceived running performance in soccer shoes: a series of eight studies. Footwear Sci. 2009;1:5–17. doi:10.1080/19424280902915350

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Rago V, Silva JR, Brito J, et al. Switching between pitch surfaces: practical applications and future perspectives for soccer training [published online ahead of print April 4, 2018]. J Sports Med Phys Fitness. 2018. PubMed ID: 29619795 doi:10.23736/S0022-4707.18.08278-6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Brito J, Krustrup P, Rebelo A. The influence of the playing surface on the exercise intensity of small-sided recreational soccer games. Hum Mov Sci. 2012;31(4):946–956. PubMed ID: 22534211 doi:10.1016/j.humov.2011.08.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    UEFA. FIFA Quality Concept: Handbook of Test Methods and Requirements for Artificial Turf Football Surfaces. Nyon, Switzerland: UEFA; 2005.

    • Search Google Scholar
    • Export Citation
  • 6.

    Burillo P, Gallardo L, Felipe JL, Gallardo A. Mechanical assessment of artificial turf football pitches: the consequences of no quality certification. Sci Res Essays. 2012;7(28):2457–2465.

    • Search Google Scholar
    • Export Citation
  • 7.

    Sánchez-Sánchez J, García-Unanue J, Jiménez-Reyes P, et al. Influence of the mechanical properties of third-generation artificial turf systems on soccer players’ physiological and physical performance and their perceptions. PLoS ONE. 2014;9(10):e111368. doi:10.1371/journal.pone.0111368

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    FIFA. FIFA Quality Programme for Football Turf. Handbook of Test Methods. Zurich, Switzerland: FIFA; 2015.

  • 9.

    Kanaras V, Metaxas TI, Mandroukas A, et al. The effect of natural and artificial grass on sprinting performance in young soccer players. Am J Sports Sci. 2014;2(1):1–4. doi:10.11648/j.ajss.20140201.11

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Andersson H, Ekblom B, Krustrup P. Elite football on artificial turf versus natural grass: movement patterns, technical standards, and player impressions. J Sports Sci. 2008;26(2):113–122. PubMed ID: 17852688 doi:10.1080/02640410701422076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gains GL, Swedenhjelm AN, Mayhew JL, Bird HM, Houser JJ. Comparison of speed and agility performance of college football players on field turf and natural grass. J Strength Cond Res. 2010;24:2613–2617. PubMed ID: 20844455 doi:10.1519/JSC.0b013e3181eccdf8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hughes MG, Birdsey L, Meyers RW, et al. The effect of playing surface on physiological responses and performance variables in a controlled football simulation. J Sports Sci. 2013;31:878–886. PubMed ID: 23316743 doi:10.1080/02640414.2012.757340

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Stone KJ, Hughes MG, Stembridge MR, Meyers RW, Newcombe DJ, Oliver JL. The influence of playing surface on physiological and performance responses during and after soccer simulation. Eur J Sport Sci. 2014;16(1):42–49. PubMed ID: 25490070 doi:10.1080/17461391.2014.984768

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    López-Fernández J, García-Unanue J, Sánchez-Sánchez J, León M, Hernando E, Gallardo L. Neuromuscular responses and physiological patterns during a soccer simulation protocol. Artificial turf versus natural grass. J Sports Med Phys Fitness. 2018;58(11):1602–1610.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Rago V, Rebelo AN, Pizzuto F, Barreira D. Small-sided soccer games on sand are more physically demanding but less technically specific compared to games on artificial turf. J Sports Med Phys Fitness. 2018;58(4):385–391. PubMed ID: 27627990

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Di Michele R, Di Renzo AM, Ammazzalorso S, Merni F. Comparison of physiological responses to an incremental running test on treadmill, natural grass, and synthetic turf in young soccer players. J Strength Cond Res. 2009;23:939–945. PubMed ID: 19387382 doi:10.1519/JSC.0b013e3181a07b6e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Sassi A, Stefanescu A, Menaspa P, Bosio A, Riggio M, Rampinini E. The cost of running on natural grass and artificial turf surfaces. J Strength Cond Res. 2011;25:606–611. PubMed ID: 20647952 doi:10.1519/JSC.0b013e3181c7baf9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Cobley JN, Close GL, Bailey DM, Davison GW. Exercise redox biochemistry: conceptual, methodological and technical recommendations. Redox Biol. 2017;12:540–548. PubMed ID: 28371751 doi:10.1016/j.redox.2017.03.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Brancaccio P, Giuseppe L, Nicola M. Biochemical markers of muscular damage. Clin Chem Lab Med. 2010;48:757–767. PubMed ID: 20518645 doi:10.1515/CCLM.2010.179

  • 20.

    Ammar A, Chtourou H, Hammouda O, et al. Relationship between biomarkers of muscle damage and redox status in response to a weightlifting training session: effect of time-of-day. Physiol Int. 2016;103(2):243–261. PubMed ID: 28639862

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ammar A, Chtourou H, Trabelsi K, et al. Temporal specificity of training: intra-day effects on biochemical responses and Olympic-Weightlifting performances. J Sports Sci. 2015;33(4):358–368. PubMed ID: 25117722 doi:10.1080/02640414.2014.944559

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ammar A, Bailey SJ, Chtourou H, et al. Effects of pomegranate supplementation on exercise performance and post-exercise recovery: a systematic review. Br J Nutr. 2018;120(11):1201–1216. doi:10.1017/S0007114518002696

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Main LC, Dawson B, Heel K, Grove JR, Landers GJ, Goodman C. Relationship between inflammatory cytokines and self-report measures of training overload. Res Sports Med. 2010;18:127–139. PubMed ID: 20397115 doi:10.1080/15438621003627133

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Ammar A, Turki M, Chtourou H, et al. Pomegranate supplementation accelerates recovery of muscle damage and soreness and inflammatory markers after a weightlifting training session. PLoS ONE. 2016;11(10):e0160305. PubMed ID: 27764091 doi:10.1371/journal.pone.0160305

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Romdhani M, Hammouda O, Chaabouni Y, et al. Sleep deprivation affects post-lunch dip performances, biomarkers of muscle damage and antioxidant status. Biol Sport. 2018;36(1):55–65. doi:10.5114/biolsport.2018.78907

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hammouda O, Chtourou H, Chaouachi A, et al. Time-of-day effects on biochemical responses to soccer-specific endurance in elite Tunisian football players. J Sports Sci. 2013;31:963–971. PubMed ID: 23311995 doi:10.1080/02640414.2012.757345

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ammar A, Chtourou H, Souissi N. Effect of time-of-day on biochemical markers in response to physical exercise. J Strength Cond Res. 2016;31(1):272–282. doi:10.1519/JSC.0000000000001481

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Binnie MJ, Dawson B, Pinnington H, Landers G, Peeling P. Effect of training surface on acute physiological responses after interval training. J Strength Cond Res. 2013;27(4):1047–1056. PubMed ID: 22739328 doi:10.1519/JSC.0b013e3182651fab

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bougard C, Moussay S, Gauthier A, Espié S, Davenne D. Effects of waking time and breakfast intake prior to evaluation of psychomotor performance in the early morning. Chronobiol Int. 2009;26:324–336. PubMed ID: 19212844 doi:10.1080/07420520902774540

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Boukhris O, Hsouna H, Chtourou L, et al. Effect of Ramadan fasting on feelings, dietary intake, rating of perceived exertion and repeated high intensity short-term maximal performance. Chronobiol Int. 2018;12:1–10.

    • Search Google Scholar
    • Export Citation
  • 31.

    Boddington MK, Lambert MI, St Clair Gibson A, Noakes TD. Reliability of a 5-m multiple shuttle test. J Sports Sci. 2001;19(3):223–228. PubMed ID: 11256826 doi:10.1080/026404101750095394

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–381. PubMed ID: 7154893

  • 33.

    Hardy CJ, Rejeski WJ. Not what, but how one feels: the measurement of affect during exercise. J Sport Exerc Psychol. 1989;11:304–317. doi:10.1123/jsep.11.3.304

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Hopkins WG. A scale of magnitudes for effect statistics. Sport Sci. 2012. Retrieved from http://sportsci.org/resource/stats/index.html

  • 35.

    Fletcher N, Nokes L, Hughes MG, et al. Physiology– Effects of playing surface in football activity. Turf Roots Mag. 2009;3:41–44.

  • 36.

    Rampinini E, Bishop D, Marcora SM, et al. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int J Sports Med. 2007;28(3):228–235. PubMed ID: 17024621 doi:10.1055/s-2006-924340

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ferris DP, Louie M, Farley CT. Running in the real world: adjusting leg stiffness for different surfaces. Proc Biol Sci. 1998;265:989–994. PubMed ID: 9675909 doi:10.1098/rspb.1998.0388

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Glaister M. (2005). Multiple sprint work– Physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005;35:757–777. PubMed ID: 16138786 doi:10.2165/00007256-200535090-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Naunheim R, Parrott H, Standeven J. (2004). A comparison of artificial turf. J Trauma. 2004;57:1311–1314. PubMed ID: 15625466 doi:10.1097/01.TA.0000136154.36483.98

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Greig M, Siegler JC. Soccer-specific fatigue and eccentric hamstrings muscle strength. J Athl Train. 2009;44:180–184. PubMed ID: 19295963 doi:10.4085/1062-6050-44.2.180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Nosaka K, Newton M, Sacco P. Delayed-onset muscle soreness does not reflect the magnitude of eccentric exercise-induced muscle damage. Scand J Med Sci Sports. 2002;12:337–346. PubMed ID: 12453160 doi:10.1034/j.1600-0838.2002.10178.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Burillo P, Gallardo L, Felipe JL, et al. Artificial turf surfaces: perception of safety, sporting feature, satisfaction and preference of football users. Eur J Sport Sci. 2014;14(1):S437–S447. doi:10.1080/17461391.2012.713005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Zanetti EM. Amateur football game on artificial turf: players’ perceptions. Appl Ergonom. 2009;40(3):485–490. doi:10.1016/j.apergo.2008.09.007

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 152 152 54
Full Text Views 15 15 2
PDF Downloads 8 8 0