Alternate-Day Low Energy Availability During Spring Classics in Professional Cyclists

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Ida A. Heikura
Search for other papers by Ida A. Heikura in
Current site
Google Scholar
PubMed
Close
,
Marc Quod
Search for other papers by Marc Quod in
Current site
Google Scholar
PubMed
Close
,
Nicki Strobel
Search for other papers by Nicki Strobel in
Current site
Google Scholar
PubMed
Close
,
Roger Palfreeman
Search for other papers by Roger Palfreeman in
Current site
Google Scholar
PubMed
Close
,
Rita Civil
Search for other papers by Rita Civil in
Current site
Google Scholar
PubMed
Close
, and
Louise M. Burke
Search for other papers by Louise M. Burke in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To assess energy and carbohydrate (CHO) availability and changes in blood hormones in 6 professional male cyclists over multiple single-day races. Methods: The authors collected weighed-food records, power-meter data, and morning body mass measurements across 8 d. CHO intakes were compared with contemporary guidelines. Energy availability (EA) was calculated as energy intake minus exercise energy expenditure, relative to fat-free mass (FFM). Skinfold thickness and blood metabolic and reproductive hormones were measured prestudy and poststudy. Statistical significance was defined as P ≤ .05. Results: Body mass (P = .11) or skinfold thickness (P = .75) did not change across time, despite alternate-day low EA (14 [9] vs 57 [10] kcal·kg−1 FFM·d−1, race vs rest days, respectively; P < .001). Cyclists with extremely low EA on race days (<10 kcal·kg−1 FFM·d−1; n = 2) experienced a trend toward decreased testosterone (−14%) and insulin-like growth factor 1 (−25%), despite being high EA (>46 kcal·kg−1 FFM·d−1) on days between. CHO intakes were significantly higher on race versus rest days (10.7 [1.3] vs 6.4 [0.8] g·kg−1·d−1, respectively; P < .001). The cyclists reached contemporary prerace fueling targets (3.4 [0.7] g·kg−1·3 h−1 CHO; P = .24), while the execution of CHO guidelines during race (51 [9] g·h−1; P = .048) and within acute (1.6 [0.5] g·kg−1·3 h−1; P = .002) and prolonged (7.4 [1.0] g·kg−1·24 h−1; P = .002) postrace recovery was poor. Conclusions: The authors are the first to report the day-by-day periodization of energy and CHO in a small sample of professional cyclists. They also examined the logistics of conducting a field study under stressful conditions in which major cooperation from the subjects and team management is needed. Their commentary around these challenges and possible solutions is a major novelty of the article.

Heikura and Burke are with the Mary MacKillop Inst for Health Research, Australian Catholic University, Melbourne, Australia, and Sports Nutrition, Australian Inst of Sport, Canberra, Australia. Quod, Strobel, and Palfreeman are with Mitchelton–Scott (WorldTour Team), UCI, Adelaide, SA, Australia. Palfreeman is also with Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar. Civil is with Nottingham Trent University, Nottingham, United Kingdom.

Heikura (ida.heikura@myacu.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Jeukendrup AE, Craig NP, Hawley JA. The bioenergetics of world class cycling. J Sci Med Sport. 2000;3(4):414433. PubMed ID: 11235007 doi:10.1016/S1440-2440(00)80008-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Mujika I, Padilla S. Physiological and performance characteristics of male professional road cyclists. Sports Med. 2001;31(7):479487. PubMed ID: 11428685 doi:10.2165/00007256-200131070-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Armstrong L. It’s not About the Bike: My Journey Back to Life. Sydney, Australia: Allen & Unwin; 2000:224.

  • 4.

    McMahon D. After Chris Froome cut back on carbs for more protein, he lost 20 pounds, started winning the Tour de France, and became a millionaire. 2016. http://www.businessinsider.my/chris-froome-weight-loss-tour-de-france-2016-/?r=US&IR=TFroomearticle

    • Search Google Scholar
    • Export Citation
  • 5.

    Jeukendrup AE. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sports Sci. 2011;29(suppl 1):S91S99. doi:10.1080/02640414.2011.610348

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mountjoy M, Sundgot-Borgen JK, Burke LM, et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med. 2018;52(11):687697. PubMed ID: 29773536 doi:10.1136/bjsports-2018-099193

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Burke LM, Close GL, Lundy B, Mooses M, Morton JP, Tenforde AS. Relative energy deficiency in sport in male athletes: a commentary on its presentation among selected groups of male athletes. Int J Sport Nutr Exerc Metab. 2018;28(4):364374. PubMed ID: 30040508 doi:10.1123/ijsnem.2018-0182

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Loucks AB. Energy balance and body composition in sports and exercise. J Sports Sci. 2004;22(1):114. PubMed ID: 14974441 doi:10.1080/0264041031000140518

  • 9.

    Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the female athlete triad--relative energy deficiency in sport (RED-S). Br J Sports Med. 2014;48(7):491497. PubMed ID: 24620037 doi:10.1136/bjsports-2014-093502

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Burke LM, Lundy B, Fahrenholtz IL, Melin AK. Pitfalls of conducting and interpreting estimates of energy availability in free-living athletes. Int J Sport Nutr Exerc Metab. 2018;28(4):350363. PubMed ID: 30029584 doi:10.1123/ijsnem.2018-0142

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Fordyce T. Chris Froome: team sky’s unprecedented release of data reveals how British cyclist won Giro d’Italia. 2018. https://www.bbc.com/sport/cycling/44694122

    • Search Google Scholar
    • Export Citation
  • 12.

    Tilt L. This is what you have to eat to compete in the Tour de France. 2018. https://www.cyclingweekly.com/news/racing/tour-de-france/this-is-what-you-have-to-eat-to-compete-in-the-tour-de-france-182775#YALxo7v3ig43gvvZ.99.

    • Search Google Scholar
    • Export Citation
  • 13.

    Trexler ET, Smith-Ryan AE, Norton LE. Metabolic adaptation to weight loss: implications for the athlete. J Int Soc Sports Nutr. 2014;11(1):7. PubMed ID: 24571926 doi:10.1186/1550-2783-11-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Impey SG, Hearris MA, Hammond KM, et al. Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Med. 2018;48(5):10311048. PubMed ID: 29453741 doi:10.1007/s40279-018-0867-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Muros JJ, Sanchez-Munoz C, Hoyos J, Zabala M. Nutritional intake and body composition changes in a UCI World Tour cycling team during the Tour of Spain. Eur J Sport Sci. 2018;17:19.

    • Search Google Scholar
    • Export Citation
  • 16.

    Saris WH, van Erp-Baart MA, Brouns F, Westerterp KR, ten Hoor F. Study on food intake and energy expenditure during extreme sustained exercise: the Tour de France. Int J Sports Med. 1989;10(suppl 1):S26S31. doi:10.1055/s-2007-1024951

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    García-Rovés PM, Terrados N, Fernández SF, Patterson AM. Macronutrients intake of top level cyclists during continuous competition--change in the feeding pattern. Int J Sports Med. 1998;19(1):6167. doi:10.1055/s-2007-971882

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ebert TR, Martin DT, Stephens B, McDonald W, Withers RT. Fluid and food intake during professional men’s and women’s road-cycling tours. Int J Sports Physiol Perform. 2007;2(1):5871. PubMed ID: 19255455 doi:10.1123/ijspp.2.1.58

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ross ML, Stephens B, Abbiss CR, Martin DT, Laursen PB, Burke LM. Fluid balance, carbohydrate ingestion, and body temperature during men’s stage-race cycling in temperate environmental conditions. Int J Sports Physiol Perform. 2014;9(3):575582. PubMed ID: 24088320 doi:10.1123/ijspp.2012-0369

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Sanches-Munoz C, Zabala M, Muros JJ. Nutritional intake and anthropometric changes of professional road cyclists during a 4-day competition. Scand J Med Sci Sports. 2016;26(7):802808. doi:10.1111/sms.12513

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Rehrer NJ, Hellemans IJ, Rolleston AK, Rush E, Miller BF. Energy intake and expenditure during a 6-day cycling stage race. Scand J Med Sci Sports. 2010;20(4):609618. PubMed ID: 19602187 doi:10.1111/j.1600-0838.2009.00974.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Pfeiffer B, Stellingwerff T, Hodgson AB, et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sports Exerc. 2012;44(2):344351. PubMed ID: 21775906 doi:10.1249/MSS.0b013e31822dc809

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Quod MJ, Martin DT, Martin JC, Laursen PB. The power profile predicts road cycling MMP. Int J Sports Med. 2010;31(6):397401. PubMed ID: 20301046 doi:10.1055/s-0030-1247528

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Loucks AB, Kiens B, Wright HH. Energy availability in athletes. J Sports Sci. 2011;29(suppl 1):S7S15. doi:10.1080/02640414.2011.588958

  • 25.

    Thomas DT, Erdman KA, Burke LM. Position of the academy of nutrition and dietetics, dietitians of Canada, and the American college of sports medicine: nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3), 501528. PubMed ID: 26920240 doi:10.1016/j.jand.2015.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Marfell-Jones MJ, Stewart AD, Olds T, de Ridder JH. International Standards for Anthropometric Assessment. Wellington, New Zealand: International Society for the Advancement of Kinanthropometry; 2012.

    • Search Google Scholar
    • Export Citation
  • 27.

    Capling L, Beck KL, Gifford JA, Slater G, Flood VM, O’Connor H. Validity of dietary assessment in athletes: a systematic review. Nutrients. 2017;9(12): pii:1313. doi:10.3390/nu9121313

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Braakhuis AJ, Meredith K, Cox GR, Hopkins WG, Burke LM. Variability in estimation of self-reported dietary intake data from elite athletes resulting from coding by different sports dietitians. Int J Sport Nutr Exerc Metab. 2003;13(2):152165. PubMed ID: 12945826 doi:10.1123/ijsnem.13.2.152

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Coyle EF, Sidossis LS, Horowitz JF, Beltz JD. Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc. 1992;24(7):782788. PubMed ID: 1501563 doi:10.1249/00005768-199207000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 Years. Br J Nutr. 1974;32(1):7797. PubMed ID: 4843734 doi:10.1079/BJN19740060

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5265 2893 1857
Full Text Views 97 21 1
PDF Downloads 82 24 3