Development of an On-Water Graded Exercise Test for Flat-Water Sprint Kayak Athletes

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Chelsie E. Winchcombe
Search for other papers by Chelsie E. Winchcombe in
Current site
Google Scholar
PubMed
Close
,
Martyn J. Binnie
Search for other papers by Martyn J. Binnie in
Current site
Google Scholar
PubMed
Close
,
Matthew M. Doyle
Search for other papers by Matthew M. Doyle in
Current site
Google Scholar
PubMed
Close
,
Cruz Hogan
Search for other papers by Cruz Hogan in
Current site
Google Scholar
PubMed
Close
, and
Peter Peeling
Search for other papers by Peter Peeling in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To determine the reliability and validity of a power-prescribed on-water (OW) graded exercise test (GXT) for flat-water sprint kayak athletes. Methods: Nine well-trained sprint kayak athletes performed 3 GXTs in a repeated-measures design. The initial GXT was performed on a stationary kayak ergometer in the laboratory (LAB). The subsequent 2 GXTs were performed OW (OW1 and OW2) in an individual kayak. Power output (PWR), stroke rate, blood lactate, heart rate, oxygen consumption, and rating of perceived exertion were measured throughout each test. Results: Both PWR and oxygen consumption showed excellent test–retest reliability between OW1 and OW2 for all 7 stages (intraclass correlation coefficient > .90). The mean results from the 2 OW GXTs (OWAVE) were then compared with LAB, and no differences in oxygen consumption across stages were evident (P ≥ .159). PWR was higher for OWAVE than for LAB in all stages (P ≤ .021) except stage 7 (P = .070). Conversely, stroke rate was lower for OWAVE than for LAB in all stages (P < .010) except stage 2 (P = .120). Conclusions: The OW GXT appears to be a reliable test in well-trained sprint kayak athletes. Given the differences in PWR and stroke rate between the LAB and OW tests, an OW GXT may provide more specific outcomes for OW training.

Winchcombe, Binnie, Hogan, and Peeling are with the School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA, Australia. Binnie, Doyle, Hogan, and Peeling are with the Western Australian Inst of Sport, Mt Claremont, WA, Australia.

Winchcombe (21137587@student.uwa.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Fry RW, Morton AR. Physiological and kinanthropometric attributes of elite flatwater kayakists. Med Sci Sports Exerc. 1991;23(11):12971301. PubMed ID: 1766347 doi:10.1249/00005768-199111000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bishop D. Physiological predictors of flat-water kayak performance in women. Eur J Appl Physiol. 2000;82(1–2):9197. PubMed ID: 10879448 doi:10.1007/s004210050656

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Michael JS, Rooney KB, Smith R. The metabolic demands of kayaking: a review. J Sports Sci Med. 2008;7(1):17. PubMed ID: 24150127

  • 4.

    Bullock N, Woolford SM, Peeling P, Bonetti DL. Sprint kayak athletes. In: Tanner RK, Gore CJ, eds. Physiological Tests for Elite Athletes. Champaign, IL: Human Kinetics; 2013.

    • Search Google Scholar
    • Export Citation
  • 5.

    van Someren KA, Oliver JE. The efficacy of ergometry determined heart rates for flat-water kayak training. Int J Sports Med. 2002;23(1):2832. PubMed ID: 11774063 doi:10.1055/s-2002-19268

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Vogler AJ, Rice AJ, Gore CJ. Physiological responses to ergometer and on-water incremental rowing tests. Int J Sports Physiol Perform. 2010;5(3):342358. PubMed ID: 20861524 doi:10.1123/ijspp.5.3.342

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Fleming N, Donne B, Fletcher D, Mahony N. A biomechanical assessment of ergometer task specificity in elite flat-water kayakers. J Sports Sci Med. 2012;11(1):1625. PubMed ID: 24149118

    • Search Google Scholar
    • Export Citation
  • 8.

    Baldari C, Meucci M, Bolletta F, Gallotta MC, Emerenzaini GP, Guidetti L. Accuracy and reliability of COSMED K5 portable metabolic device versus simulating system. Sports Sci Health. 2015;11(suppl 1):S58.

    • Search Google Scholar
    • Export Citation
  • 9.

    Macdermid PW, Fink PW. The validation of a paddle power meter for slalom kayaking. Sports Med Int Open. 2017;2:E50E57. doi:10.1055/s-0043-100380

    • Search Google Scholar
    • Export Citation
  • 10.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692 doi:10.1519/00124278-200102000-00019

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 12.

    Bishop D, Jenkins DG, Mackinnon LT. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc. 1998;30(8):12701275. PubMed ID: 9710868 doi:10.1097/00005768-199808000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.

  • 14.

    Hopkins WG. Spreadsheets for analysis of validity and reliability. Sportscience. 2015;19:3642. www.sportsci.org/2015/validRely.htm. Accessed July 30, 2017.

    • Search Google Scholar
    • Export Citation
  • 15.

    Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155163. PubMed ID: 27330520 doi:10.1016/j.jcm.2016.02.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hopkins WG. A scale of magnitudes for effect statistics. 2006. http://www.sportsci.org/resource/stats/effectmag.html. Accessed October 5, 2017.

    • Search Google Scholar
    • Export Citation
  • 17.

    Bagger M, Petersen PH, Pedersen PK. Biological variation in variables associated with exercise training. Int J Sports Med. 2003;24(6):433440. PubMed ID: 12905092 doi:10.1055/s-2003-41180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Boyas S, Nordez A, Cornu C, Guevel A. Power responses of a rowing ergometer: mechanical sensors vs. concept 2 measurement system. Int J Sports Med. 2006;27(10):830833. PubMed ID: 16612738 doi:10.1055/s-2006-923774

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Borges TO, Bullock N, Aitken D, Coutts AJ. Accuracy and validity of commercially available kayak ergometers. Int J Sports Physiol Perform. 2017;12(9):12671270. PubMed ID: 28182506 doi:10.1123/ijspp.2016-0653

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Barnes C, Adams P. Reliability and criterion validity of a 120 s maximal sprint on a kayak ergometer. J Sports Sci. 1998;16(1):2526.

  • 21.

    Fleming N, Donne B, Fletcher D. Effect of kayak ergometer elastic tension on upper limb EMG activity and 3D kinematics. J Sports Sci Med. 2012;11(3):430437. PubMed ID: 24149350

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bishop D. The validity of physiological variables to assess training intensity in kayak athletes. Int J Sports Med. 2004;25(1):6872. PubMed ID: 14750016 doi:10.1055/s-2003-45233

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Borges TO, Bullock N, Duff C, Coutts AJ. Methods for quantifying training in sprint kayak. J Strength Cond Res. 2014;28(2):474482. PubMed ID: 24476743 doi:10.1519/JSC.0b013e31829b56c4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Achten J, Jeukendrup AE. Heart rate monitoring: applications and limitations. Sports Med. 2003;33(7):517538. PubMed ID: 12762827 doi:10.2165/00007256-200333070-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Jeukendrup A, VanDiemen A. Heart rate monitoring during training and competition in cyclists. J Sports Sci. 1998;16:S91S99. PubMed ID: 22587722 doi:10.1080/026404198366722

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Nimmerichter A, Eston RG, Bachl N, Williams C. Longitudinal monitoring of power output and heart rate profiles in elite cyclists. J Sports Sci. 2011;29(8):831840. PubMed ID: 21500082 doi:10.1080/02640414.2011.561869

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lambert MI, Borresen J. Measuring training load in sports. Int J Sports Physiol Perform. 2010;5(3):406411. PubMed ID: 20861529 doi:10.1123/ijspp.5.3.406

  • 28.

    Villarino-Cabezas S, González-Ravé JM, Santos-Garcia DJ, Valdivielso FN. Comparison between a laboratory test in kayak-ergometer and continuous and interval exercises on open water in well-trained young kayakers. Int Sport Med J. 2013;14(4):196204.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2405 832 18
Full Text Views 59 8 0
PDF Downloads 47 12 0