An Analysis of Variability in Power Output During Indoor and Outdoor Cycling Time Trials

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: Regulation of power output during cycling encompasses the integration of internal and external demands to maximize performance. However, relatively little is known about variation in power output in response to the external demands of outdoor cycling. The authors compared the mean power output and the magnitude of power-output variability and structure during a 20-min time trial performed indoors and outdoors. Methods: Twenty male competitive cyclists (V˙O2max 60.4 [7.1] mL·kg−1·min−1) performed 2 randomized maximal 20-min time-trial tests: outdoors at a cycle-specific racing circuit and indoors on a laboratory-based electromagnetically braked training ergometer, 7 d apart. Power output was sampled at 1 Hz and collected on the same bike equipped with a portable power meter in both tests. Results: Twenty-minute time-trial performance indoor (280 [44] W) was not different from outdoor (284 [41] W) (P = .256), showing a strong correlation (r = .94; P < .001). Within-persons SD was greater outdoors (69 [21] W) than indoors (33 [10] W) (P < .001). Increased variability was observed across all frequencies in data from outdoor cycling compared with indoors (P < .001) except for the very slowest frequency bin (<0.0033 Hz, P = .930). Conclusions: The findings indicate a greater magnitude of variability in power output during cycling outdoors. This suggests that constraints imposed by the external environment lead to moderate- and high-frequency fluctuations in power output. Therefore, indoor testing protocols should be designed to reflect the external demands of cycling outdoors.

Jeffries and Galna are with the School of Biomedical Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom. Waldron and Patterson are with the School of Sport, Health and Applied Science, St Mary’s University, London, United Kingdom. Waldron is also with the School of Science and Technology, University of New England, Armidale, NSW, Australia. Galna is with the Inst of Neuroscience, Inst for Ageing, Newcastle University, Newcastle Upon Tyne, United Kingdom.

Jeffries (Owen.Jeffries@newcastle.ac.uk) is corresponding author.
  • 1.

    de Koning JJ, Bobbert MF, Foster C. Determination of optimal pacing strategy in track cycling with an energy flow model. J Sci Med Sport. 1999;2:266–277. PubMed ID: 10668763 doi:10.1016/S1440-2440(99)80178-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Abbiss CR, Laursen PB. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008;38:239–252. PubMed ID: 18278984 doi:10.2165/00007256-200838030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    St Clair Gibson A, Lambert EV, Rauch LHG, et al. The role of information processing between the brain and peripheral physiological systems in pacing and perception of effort. Sports Med. 2006;36:705–722. PubMed ID: 16869711 doi:10.2165/00007256-200636080-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Foster C, Schrager M, Snyder AC, Thompson NN. Pacing strategy and athletic performance. Sports Med. 1994;17:77–85. PubMed ID: 8171225 doi:10.2165/00007256-199417020-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Smits BLM, Pepping GJ, Hettinga FJ. Pacing and decision making in sport and exercise: the roles of perception and action in the regulation of exercise intensity. Sport Med. 2014;44:763–775. doi:10.1007/s40279-014-0163-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Tucker R, Bester A, Lambert EV, et al. Non-random fluctuations in power output during self-paced exercise. Br J Sports Med. 2006;40:912–917. PubMed ID: 16980537 doi:10.1136/bjsm.2006.026435

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Lambert EV, St Clair Gibson A, Noakes TD. Complex systems model of fatigue: integrative homoeostatic control of peripheral physiological systems during exercise in humans. Br J Sports Med. 2005;39:52–62. PubMed ID: 15618343 doi:10.1136/bjsm.2003.011247

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    St Clair Gibson A, Swart J, Tucker R. The interaction of psychological and physiological homeostatic drives and role of general control principles in the regulation of physiological systems, exercise and the fatigue process—the Integrative Governor theory. Eur J Sport Sci. 2018;18:25–36. PubMed ID: 28478704 doi:10.1080/17461391.2017.1321688

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Gardner AS, Martin JC, Martin DT, Barras M, Jenkins DG. Maximal torque- and power-pedaling rate relationships for elite sprint cyclists in laboratory and field tests. Eur J Appl Physiol. 2007;101:287–292. PubMed ID: 17562069 doi:10.1007/s00421-007-0498-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bouillod A, Pinot J, Soenen F, Ouvrard T, Grappe F. Dependence of the nature of the pedaling activity on maximal aerobic power in cycling. Int J Sports Physiol Perform. 2017;12:44–49. PubMed ID: 27002343 doi:10.1123/ijspp.2015-0489

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Smith MF, Davison RC, Balmer J, Bird SR. Reliability of mean power recorded during indoor and outdoor self-paced 40 km cycling time-trials. Int J Sports Med. 2001;22:270–274. PubMed ID: 11414669 doi:10.1055/s-2001-13813

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Swain DP. A model for optimizing cycling performance by varying power on hills and in wind. Med Sci Sports Exerc. 1997;29:1104–1108. PubMed ID: 9268969 doi:10.1097/00005768-199708000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Atkinson G, Brunskill A. Pacing strategies during a cycling time trial with simulated headwinds and tailwinds. Ergonomics. 2000;43:1449–1460. PubMed ID: 11083127 doi:10.1080/001401300750003899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Abbiss CR, Straker L, Quod MJ, Martin DT, Laursen PB. Examining pacing profiles in elite female road cyclists using exposure variation analysis. Br J Sports Med. 2010;44:437–442. PubMed ID: 18523040 doi:10.1136/bjsm.2008.047787

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Terblanche E, Wessels JA, Stewart RI, Koeslag JH. A computer simulation of free-range exercise in the laboratory. J Appl Physiol. 1999;87:1386–1391. PubMed ID: 10517768 doi:10.1152/jappl.1999.87.4.1386

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    De Pauw K, Roelands B, De Geus B, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8:111–122. doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5:82–87. PubMed ID: 11538314 doi:10.1063/1.166141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jobson SA, Nevill AM, George SR, Jeukendrup AE, Passfield L. Influence of body position when considering the ecological validity of laboratory time-trial cycling performance. J Sports Sci. 2008;26:1269–1278. PubMed ID: 18803064 doi:10.1080/02640410802183585

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ivanov PC, Amaral LA, Goldberger AL, et al. Multifractality in human heartbeat dynamics. Nature. 1999;399:461–465. PubMed ID: 10365957 doi:10.1038/20924

  • 20.

    Hausdorff JM. Gait variability: methods, modeling and meaning. J Neuroeng Rehabil. 2005;2:19. PubMed ID: 16033650 doi:10.1186/1743-0003-2-19

  • 21.

    Cain SM, Ashton-Miller JA, Perkins NC. On the skill of balancing while riding a bicycle. PLoS ONE. 2016;11:e0149340. PubMed ID: 26910774 doi:10.1371/journal.pone.0149340

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Blake OM, Wakeling JM. Muscle coordination during an outdoor cycling time trial. Med Sci Sports Exerc. 2012;44:939–948. PubMed ID: 22089484 doi:10.1249/MSS.0b013e3182404eb4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lacaille RA, Masters KS, Heath EM. Effects of cognitive strategy and exercise setting on running performance, perceived exertion, affect, and satisfaction. Psychol Sport Exerc. 2004;5:461–476. doi:10.1016/S1469-0292(03)00039-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Bigliassi M, Karageorghis CI, Wright MJ, Orgs G, Nowicky AV. Effects of auditory stimuli on electrical activity in the brain during cycle ergometry. Physiol Behav. 2017;177:135–147. PubMed ID: 28442333 doi:10.1016/j.physbeh.2017.04.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 359 359 56
Full Text Views 17 17 3
PDF Downloads 14 14 4