Acute Responses to On-Court Repeated-Sprint Training Performed With Blood Flow Restriction Versus Systemic Hypoxia in Elite Badminton Athletes

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: Repeated-sprint training (RS) is commonly conducted in normoxia, but its completion with localized (blood-flow restriction [BFR]) or systemic hypoxia has been proven effective for performance enhancement. Yet, few studies have applied these types of RS sessions in racket sports. The authors aimed to determine the acute responses to these types of training in elite badminton players. Methods: Eight male elite badminton players participated in this randomized crossover study. They performed 3 on-court RS sessions, each consisting of 3 sets of 10 repetitions of 10-s badminton-specific movements in normoxia (RSN), systemic normobaric hypoxia (RSH, FiO2 = 14%), or with BFR (RS-BFR, 40% arterial occlusion pressure). Performance, perceptual (ie, rating of perceived exertion), and physiological (ie, pulse saturation, muscle oxygenation, blood lactate, creatine kinase, heart-rate variability) responses were measured after each set and up to 48 h postsession. Results: RS-BFR induced a greater performance impairment (lower distance and accelerations) and a higher local perceived exertion in the legs than RSN and RSH (P < .05), whereas greater overall fatigue was reported with RSH (P < .05). RSH induced a lower saturation (P < .001), but no differences were observed in muscle oxygenation between conditions. No differences in creatine kinase or heart-rate variability were observed at any time point (from baseline up to 48 h after the session). Conclusions: RS-BFR—and, to a lower extent, RSH—resulted in impaired performance and a higher perceived strain than RSN. However, these 2 hypoxic methods do not seem to induce a long-lasting (post 24–48 h) physiological stress in elite badminton players.

Valenzuela is with the Physiology Unit, Systems Biology Dept, University of Alcalá, Madrid, Spain. Valenzuela, Sánchez-Martínez, Torrontegi, Vázquez-Carrión, González, and Montalvo are with the Dept of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain. Millet is with the Inst of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.

Valenzuela (pedrol.valenzuela@edu.uah.es) is corresponding author.P.L. Valenzuela and G. Sánchez-Martínez contributed equally to this work.
  • 1.

    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41(8):673–694. doi:10.2165/11590550-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability—part II: recommendations for training. Sports Med. 2011;41(9):741–756. doi:10.2165/11590560-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Brocherie F. Effects of repeated-sprint training in hypoxia on sea-level performance: a meta-analysis. Sports Med. 2017;47:1651–1660. doi:10.1007/s40279-017-0685-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med. 2013;47:i45–i50. doi:10.1136/bjsports-2013-092741

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Montero D, Lundby C. No improved performance with repeated-sprint training in hypoxia versus normoxia: a double-blind and crossover study. Int J Sports Physiol Perform. 2017;12(2):161–167. doi:10.1123/ijspp.2015-0691

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Girard O, Brocherie F, Millet GP. Effects of altitude/hypoxia on single- and multiple-sprint performance: a comprehensive review. Sports Med. 2017;47(10):1931–1949. doi:10.1007/s40279-017-0733-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Scott BR, Loenneke JP, Slattery KM, Dascombe BJ. Blood flow restricted exercise for athletes: a review of available evidence. J Sci Med Sport. 2016;19(5):360–367. PubMed ID: 26118847 doi:10.1016/j.jsams.2015.04.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Scott BR, Peiffer JJ, Goods PSR. The effects of supplementary low-load blood flow restriction training on morphological and performance-based adaptations in team sport athletes. J Strength Cond Res. 2017;31(8):2147–2154. PubMed ID: 28737609 doi:10.1519/JSC.0000000000001671

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Cook CJ, Kilduff LP, Beaven CM. Improving strength and power in trained athletes with 3 weeks of occlusion training. Int J Sports Physiol Perform. 2014;9(1):166–172. PubMed ID: 23628627 doi:10.1123/ijspp.2013-0018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Behringer M, Behlau D, Montag JCK, McCourt ML, Mester J. Low-intensity sprint training with blood flow restriction improves 100-m dash. J Strength Cond Res. 2017;31(9):2462–2472. PubMed ID: 27941491 doi:10.1519/JSC.0000000000001746

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bowtell JL, Cooke K, Turner R, Mileva KN, Sumners DP. Acute physiological and performance responses to repeated sprints in varying degrees of hypoxia. J Sci Med Sport. 2014;17(4):399–403. PubMed ID: 23809839 doi:10.1016/j.jsams.2013.05.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kon M, Nakagaki K, Ebi Y, Nishiyama T, Russell AP. Hormonal and metabolic responses to repeated cycling sprints under different hypoxic conditions. Growth Horm IGF Res. 2015;25(3):121–126. PubMed ID: 25900847 doi:10.1016/j.ghir.2015.03.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Buchheit M, Kuitunen S, Voss SC, Williams BK, Mendez-Villanueva A, Bourdon PC. Physiological strain associated with high-intensity hypoxic intervals in highly trained young runners. J Strength Cond Res. 2012;26(1):94–105. PubMed ID: 22158261 doi:10.1519/JSC.0b013e3182184fcb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Brocherie F, Millet GP, Girard O. Psychophysiological responses to repeated-sprint training in normobaric hypoxia and normoxia. Int J Sports Physiol Perform. 2017;12(1):115–123. doi:10.1123/ijspp.2016-0052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Brechbuhl C, Brocherie F, Millet GP, Schmitt L. Effects of repeated-sprint training in hypoxia on tennis-specific performance in well-trained players. Sport Med Int Open. 2018;2(5):E123–E132. doi:10.1055/a-0719-4797

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Brechbuhl C, Schmitt L, Millet GP, Brocherie F. Shock microcycle of repeated-sprint training in hypoxia and tennis performance: case study in a rookie professional player. Int J Sports Sci Coach. 2018;13(5):723–728. doi:10.1177/1747954118783586

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Willis SJ, Alvarez L, Borrani F, Millet GP. Oxygenation time course and neuromuscular fatigue during repeated cycling sprints with bilateral blood flow restriction. Physiol Rep. 2018;6(19):e13872. doi:10.14814/phy2.13872

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Phomsoupha M, Laffaye G. The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics. Sports Med. 2015;45(4):473–495. doi:10.1007/s40279-014-0287-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mouser JG, Dankel SJ, Mattocks KT, et al. Blood flow restriction and cuff width: effect on blood flow in the legs [published online ahead of print January 21, 2018]. Clin Physiol Funct Imaging. doi:10.1111/cpf.12504

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Loenneke JP, Fahs CA, Rossow LM, et al. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol. 2012;112(8):2903–2912. PubMed ID: 22143843 doi:10.1007/s00421-011-2266-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Muyor JM, Granero-Gil P, Pino-Ortega J. Reliability and validity of a new accelerometer (Wimu®) system for measuring velocity during resistance exercises. Proc Inst Mech Eng Part P J Sports Eng Technol. 2018;232(3):218–224. doi:10.1177/1754337117731700

    • Search Google Scholar
    • Export Citation
  • 22.

    Pino-Ortega J, García-Rubio J, Ibáñez SJ. Validity and reliability of the WIMU inertial device for the assessment of the vertical jump. PeerJ. 2018;6:e4709. PubMed ID: 29736342 doi:10.7717/peerj.4709

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Barrett S, Midgley AW, Towlson C, Garrett A, Portas M, Lovell R. Within-match PlayerLoadTM patterns during a simulated soccer match: potential implications for unit positioning and fatigue management. Int J Sports Physiol Perform. 2015;11(1):135–140. doi:10.1123/ijspp.2014-0582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Nicolella D, Torres-Ronda L, Saylor K, Schelling X. Validity and reliability of an accelerometer-based player tracking device. PLoS ONE. 2018;13(2):e0191823. PubMed ID: 29420555 doi:10.1371/journal.pone.0191823

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Boyd LJ, Ball K, Aughey RJ. The reliability of minimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform. 2011;6(3):311–321. PubMed ID: 21911857 doi:10.1123/ijspp.6.3.311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Casamichana D, Castellano J, Calleja-Gonzalez J, San Roman J, Castagna C. Relationship between indicators of training load in soccer players. J Strength Cond Res. 2013;27(2):369–374. PubMed ID: 22465992 doi:10.1519/JSC.0b013e3182548af1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Born DP, Stöggl T, Swarén M, Björklund G. Near-infrared spectroscopy: more accurate than heart rate for monitoring intensity in running in hilly terrain. Int J Sports Physiol Perform. 2017;12(4):440–447. PubMed ID: 27396389 doi:10.1123/ijspp.2016-0101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Naranjo Orellana J, de la Cruz Torres B, Sarabia Cachadiña E, de Hoyo M, Domínguez Cobo S. Two new indexes for the assessment of autonomic balance in elite soccer players. Int J Sports Physiol Perform. 2015;10:452–457. PubMed ID: 25364865 doi:10.1123/ijspp.2014-0235

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Ramos-Campo DJ, Rubio-Arias JA, Dufour S, Chung L, Ávila-Gandía V, Alcaraz PE. Biochemical responses and physical performance during high-intensity resistance circuit training in hypoxia and normoxia. Eur J Appl Physiol. 2017;117(4):809–818. PubMed ID: 28260202 doi:10.1007/s00421-017-3571-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Reis JF, Millet GP, Malatesta D, et al. Are oxygen uptake kinetics modified when using a respiratory snorkel? Int J Sports Physiol Perform. 2010;5(3):292–300. PubMed ID: 20861520 doi:10.1123/ijspp.5.3.292

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Faiss R, Willis S, Born DP, et al. Repeated double-poling sprint training in hypoxia by competitive cross-country skiers. Med Sci Sports Exerc. 2015;47(4):809–817. PubMed ID: 25083727 doi:10.1249/MSS.0000000000000464

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ganesan G, Cotter JA, Reuland W, Cerussi AE, Tromberg BJ, Galassetti P. Effect of blood flow restriction on tissue oxygenation during knee extension. Med Sci Sports Exerc. 2015;47(1):185–193. PubMed ID: 24870580. doi:10.1249/MSS.0000000000000393

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hettinga FJ, Konings MJ, Cooper CE. Differences in muscle oxygenation, perceived fatigue and recovery between long-track and short-track speed skating. Front Physiol. 2016;7:619. PubMed ID: 28018244 doi:10.3389/fphys.2016.00619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Crum EM, O’Connor WJ, Van Loo L, Valckx M, Stannard SR. Validity and reliability of the Moxy oxygen monitor during incremental cycling exercise. Eur J Sport Sci. 2017;17(8):1037–1043. PubMed ID: 28557670 doi:10.1080/17461391.2017.1330899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Suga T, Okita K, Morita N, et al. Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2010;108:1563–1567. PubMed ID: 20360434 doi:10.1152/japplphysiol.00504.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Takada S, Okita K, Suga T, et al. Low-intensity exercise can increase muscle mass and strength proportionally to enhanced metabolic stress under ischemic conditions. J Appl Physiol. 2012;113(2):199–205. PubMed ID: 22628373 doi:10.1152/japplphysiol.00149.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ramos-Campo D, Rubio-Arias J, Freitas T, Camacho A, Jiménez-Diaz J, Alcaraz P. Acute physiological and performance responses to high-intensity resistance circuit training in hypoxic and normoxic conditions. J Strength Cond Res. 2017;31(4):1040–1047. PubMed ID: 27465634 doi:10.1519/JSC.0000000000001572

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Stuckey MI, Tordi N, Mourot L, et al. Autonomic recovery following sprint interval exercise. Scand J Med Sci Sports. 2012;22(6):756–763. doi:10.1111/j.1600-0838.2011.01320.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Panissa VLG, Cal Abad CC, Julio UF, Andreato LV, Franchini E. High-intensity intermittent exercise and its effects on heart rate variability and subsequent strength performance. Front Physiol. 2016;7(81):1–7. doi:10.3389/fphys.2016.00081

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Schmitt L, Regnard J, Millet GP. Monitoring fatigue status with HRV measures in elite athletes: an avenue beyond RMSSD? Front Physiol. 2015;6:2013–2015. doi:10.3389/fphys.2015.00343

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Loenneke JP, Thiebaud RS, Abe T. Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence. Scand J Med Sci Sports. 2014:1–8. doi:10.1111/sms.12210

    • Search Google Scholar
    • Export Citation
  • 42.

    Lundby C, Millet G, Calbet J, Bärtsch P, Subudhi A. Does ‘altitude training’ increase exercise performance in elite athletes? Br J Sports Med. 2012;46:792–795. doi:10.1136/bjsports-2012-091231

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 236 236 81
Full Text Views 44 44 6
PDF Downloads 33 33 4