Acute Resistance Exercise: Physiological and Biomechanical Alterations During a Subsequent Swim Training Session

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Gavriil G. Arsoniadis
Search for other papers by Gavriil G. Arsoniadis in
Current site
Google Scholar
PubMed
Close
,
Gregory C. Bogdanis
Search for other papers by Gregory C. Bogdanis in
Current site
Google Scholar
PubMed
Close
,
Gerasimos Terzis
Search for other papers by Gerasimos Terzis in
Current site
Google Scholar
PubMed
Close
, and
Argyris G. Toubekis
Search for other papers by Argyris G. Toubekis in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To examine the acute effect of dry-land strength training on physiological and biomechanical parameters in a subsequent swim training session. Methods: Twelve male swimmers (age: 19.0 [2.2] y, peak oxygen uptake: 65.5 [11.4] mL·kg−1·min−1) performed a 5 × 200-m test with progressively increasing intensity. Blood lactate (BL) concentration was measured after each 200-m bout, and the speed corresponding to 4 mmol·L−1 (V4) was calculated. In the experimental (EXP) and control (CON) conditions, swimmers participated in a swim training session consisting of 1000-m warm-up, a bout of 10-second tethered swimming sprint, and 5 × 400 m at V4. In EXP condition, swimmers completed a dry-land strength training session (load: 85% of 1-repetition maximum) 15 minutes before the swimming session. In CON condition, swimmers performed the swimming session only. Oxygen uptake, BL concentration, arm-stroke rate, arm-stroke length, and arm-stroke efficiency were measured during the 5 × 400 m. Results: Force in the 10-second sprint was not different between conditions (P = .61), but fatigue index was higher in the EXP condition (P = .03). BL concentration was higher in EXP condition and showed large effect size at the fifth 400-m repetition compared with CON condition (6.4 [2.7] vs 4.6 [2.8] mmol·L−1, d = 0.63). During the 5 × 400 m, arm-stroke efficiency remained unchanged, arm-stroke length was decreased from the third repetition onward (P = .01), and arm-stroke rate showed a medium increment in EXP condition (d = 0.23). Conclusions: Strength training completed 15 minutes before a swim training session caused moderate changes in biomechanical parameters and increased BL concentration during swimming. Despite these changes, swimmers were able to maintain force and submaximal speed during the endurance training session.

Arsoniadis and Toubekis are with the Div of Aquatic Sports, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece. Bogdanis, Terzis, and Toubekis are with the Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece.

Toubekis (atoubekis@phed.uoa.gr) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Crowley E, Harrison AJ, Lyons M. Dry-land resistance training practices of elite swimming strength and conditioning coaches. J Strength Cond Res. 2018;32(9):25922600. PubMed ID: 30137031 doi:10.1519/JSC.0000000000002599

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Girold S, Maurin D, Dugue B, Chatard J, Millet G. Effects of dry land vs. resisted and assisted-sprint exercises on swimming sprint performances. J Strength Cond Res. 2007;21(2):599605. PubMed ID: 17530963

    • Search Google Scholar
    • Export Citation
  • 3.

    Aspenes ST, Karlsen T. Exercise-training intervention studies in competitive swimming. Sports Med. 2012;42(6):527543. PubMed ID: 22587822 doi:10.2165/11630760-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Girold S, Jalab C, Bernard O, Carette P, Kemoun G, Dugue B. Dry land strength training vs. electrical stimulation in sprint swimming performance. J Strength Cond Res. 2012;26(2):497505. PubMed ID: 22233789 doi:10.1519/JSC.0b013e318220e6e4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Crowley E, Harrison JA, Lyons M. The impact of resistance training on swimming performance: a systematic review. Sports Med. 2017;47(11):22852307. PubMed ID: 28497283 doi:10.1007/s40279-017-0730-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Fyfe JJ, Bushop JD, Stepto KN. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med. 2014;44:743762. PubMed ID: 24728927 doi:10.1007/s40279-014-0162-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Murach AK, Bagley RJ. Skeletal muscle hypertrophy with concurrent exercise training: contrary evidence for an interference effect. Sports Med. 2016;46(8):10291039. PubMed ID: 26932769 doi:10.1007/s40279-016-0496-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    McCarthy PJ, Myron AP, Agre CJ. Neuromuscular adaptations to concurrent strength and endurance training. Med Sci Sports Exerc. 2002;34(3):511519. PubMed ID: 11880817 doi:10.1097/00005768-200203000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Chtara M, Chamari K, Chaouachi M, et al. Effects of intra-session concurrent endurance and strength training on aerobic performance and capacity. Br J Sports Med. 2005;39:555560. PubMed ID: 16046343 doi:10.1136/bjsm.2004.015248

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Doma K, Schumman M, Sinclair WH, Leicht AS, Deakin BG, Häkkinen K. The repeated bout effect of typical lower body strength training sessions on sub-maximal running performance and hormonal response. Eur J Appl Physiol. 2015;115:17891799. PubMed ID: 25828143 doi:10.1007/s00421-015-3159-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Doma K, Deakin B. The acute effects intensity and volume of strength training on running performance. Eur J Sport Sci. 2014;14(2):107115. PubMed ID: 24533516 doi:10.1080/17461391.2012.726653

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Howatson G, Bradon R, Hunder AM. The response to and recovery maximum-strength and -power training in elite track and field athletes. Int J Sports Physiol Perform. 2016;11(3):356362. doi:10.1123/ijspp.2015-0235.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Garay LC, Rhea M, Reis VM, et al. Effects of a resistance exercise session on the physiological response and time to exhaustion during submaximal and maximal cycling. J Exerc Physiol. 2013;16(1):3644 .

    • Search Google Scholar
    • Export Citation
  • 14.

    Taipale SR, Schumann M, Mikkola J, et al. Acute neuromuscular and metabolic responses to combined strength and endurance loadings: the “order effect” in recreationally endurance trained runners. J Sports Sci. 2014;32(12):11551164. PubMed ID: 24576212 doi:10.1080/02640414.2014.889842

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Costill DL, Kovaleski J, Porter D, Fielding R, King D. Energy expenditure during front crawl swimming: predicting success in middle-distance events. Int J Sports Med. 1985;6(5):266270. doi:10.1055/s-2008-1025849.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Levinger I, Goodman C, Hare DL, Jerums G, Toia D, Selig S. The reliability of the 1RM strength test for untrained middle-aged individuals. J Sci Med Sport. 2009;12:310316. PubMed ID: 18078784 doi:10.1016/j.jsams.2007.10.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Pyne DB, Lee H, Swanwick KM. Monitoring lactate threshold in word-ranked swimmers. Med Sci Sports Exerc. 2001;33(2):291297. PubMed ID: 11224820 doi:10.1097/00005768-200102000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Morouco P, Keskinen KL, Vilas-Boas JP, Fernandes JR. Relationship between tethered forces and the four swimming techniques performance. J Appl Biomech. 2011;27:161169. PubMed ID: 21576725 doi:10.1123/jab.27.2.161

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Zamparo P, Pendergast RD, Mollendorf J, Termin A, Minetti EA. An energy balance of front crawl. Eur J Appl Physiol. 2005;94:134144 . doi:10.1007/s00421-004-1281-4.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: L. Erlbaum Associates; 1988.

  • 22.

    Toubekis AG, Vasilaki A, Douda H, Gourgoulis V, Tokmakidis S. Physiological responses during interval training at relative to critical velocity intensity in young swimmers. J Sci Med Sport. 2011;14(4):363368. PubMed ID: 21459668 doi:10.1016/j.jsams.2011.03.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Thomas K, Brownstein CG, Dent J, Parker P, Goodall S, Howatson G. Neuromuscular fatigue and recovery after heavy resistance, jump, and sprint training. Med Sci Sports Exerc. 2018;50(12):25262535. PubMed ID: 30067591 doi:10.1249/MSS.0000000000001733

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Doma K, Deakin BG. The effects of combined strength and endurance training on running performance the following day. Int J Sports Health Sci. 2013;11:19 . doi:10.5432/ijshs.201230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Boyas S, Guével A. Neuromuscular fatigue in healthy muscle: underlying factors and adaptation mechanisms. Ann Phys Rehabil Med. 2011;54:88108. PubMed ID: 21376692 doi:10.1016/j.rehab.2011.01.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Wallace L, Slattery K, Couts A. The ecological validity and application of the session-RPE method for quantifying training loads in swimming. J Strength Cond Res. 2009;23(1):3338. PubMed ID: 19002069 doi:10.1519/JSC.0b013e3181874512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Alberty M, Sidney M, Pelayo P, Toussaint HM. Stroking characteristics during time to exhaustion tests. Med Sci Sports Exerc. 2009;41(3):637644. PubMed ID: 19204586 doi:10.1249/MSS.0b013e31818acfba

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Barbosa TM, Fernandes RJ, Keskinen KL, Vilas-Boas JP. The influence of stroke mechanics into energy cost of elite swimmers. Eur J Appl Physiol. 2008;103(2):139149. PubMed ID: 18214521 doi:10.1007/s00421-008-0676-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3169 786 40
Full Text Views 59 8 0
PDF Downloads 66 11 0