Training-Induced Changes in the Respiratory Compensation Point, Deoxyhemoglobin Break Point, and Maximal Lactate Steady State: Evidence of Equivalence

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To evaluate whether the coherence in the oxygen uptake (V˙O2) associated with the respiratory compensation point (RCP), near-infrared spectroscopy-derived muscle deoxyhemoglobin ([HHb]) break point ([HHb]BP), and maximal lactate steady state (MLSS) would persist at the midpoint and endpoint of a 7-month training and racing season. Methods: Eight amateur male cyclists were tested in 3 separate phases over the course of a cycling season (PRE, MID, and POST). Testing at each phase included a ramp-incremental test to exhaustion to determine RCP and [HHb]BP. The PRE and POST phases also included constant power output rides to determine MLSS. Results: Compared with PRE, V˙O2 at both RCP and [HHb]BP was greater at MID (delta: RCP 0.23 [0.14] L·min−1, [HHb]BP 0.33 [0.17] L·min−1) and POST (delta: RCP 0.21 [0.12], [HHb]BP 0.30 [0.14] L·min−1) (P < .05). V˙O2 at MLSS also increased from PRE to POST (delta: 0.17 [12] L·min−1) (P < .05). V˙O2 was not different at RCP, [HHb]BP, and MLSS at PRE (3.74 [0.34], 3.64 [0.40], 3.78 [0.23] L·min−1) or POST (3.96 [0.25], 3.95 [0.32], 3.94 [0.18] L·min−1) respectively, and RCP (3.98 [0.33] L·min−1) and [HHb]BP (3.97 [0.34] L·min−1) were not different at MID (P > .05). PRE–MID and PRE–POST changes in V˙O2 associated with RCP, [HHb]BP, and MLSS were strongly correlated (range: r = .85–.90) and demonstrated low mean bias (range = −.09 to .12 L·min−1). Conclusions: At all measured time points, V˙O2 at RCP, [HHb]BP, and MLSS were not different. Irrespective of phase comparison, direction, or magnitude of V˙O2 changes, intraindividual changes between each index were strongly related, indicating that interindividual differences were reflected in the group mean response and that their interrelationships are beyond coincidental.

Inglis, Iannetta, and Murias are with the Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada. Keir is with the Dept of Medicine, University Health Network, Toronto, Ontario, Canada.

Murias (jmmurias@ucalgary.ca) is corresponding author.
  • 1.

    Billat VL, Sirvent P, Py G, Koralsztein J-P, Mercier J. The concept of maximal lactate steady state. Sports Med. 2003;33(6):407426. doi:10.2165/00007256-200333060-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Iannetta D, Inglis CE, Fullerton C, Passfield L, Murias JM. Metabolic and performance-related consequences of exercising at and slightly above MLSS. Scand J Med Sci Sports. 2018;28(12):24812493. PubMed ID: 30120803 doi:10.1111/sms.13280

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Fontana FY, Keir DA, Bellotti C, De Roia GF, Murias JM, Pogliaghi S. Determination of respiratory point compensation in healthy adults: can non-invasive near-infrared spectroscopy help? J Sci Med Sport. 2015;18(5):590595. PubMed ID: 25153251 doi:10.1016/j.jsams.2014.07.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Keir DA, Fontana FY, Robertson TC, et al. Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exerc. 2015;47(9):19321940. doi:10.1249/MSS.0000000000000613

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Keir DA, Pogliaghi S, Murias JM. The respiratory compensation point/Deoxy-BP are valid surrogates for critical power/maximum lactate steady state. Med Sci Sports Exerc. 2018;50(11):23752378. doi:10.1249/MSS.0000000000001698

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Broxterman RM, Craig JC, Richardson RS. The respiratory compensation point and the deoxygenation break point are not valid surrogates for critical power and maximum lactate steady state. Med Sci Sports Exerc. 2018;50(11):23792382. PubMed ID: 29975303 doi:10.1249/MSS.0000000000001699

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Craig JC, Broxterman RM, Barstow TJ. Considerations for identifying the boundaries of sustainable performance. Med Sci Sports Exerc. 2015;47(9):1997. PubMed ID: 26274547 doi:10.1249/MSS.0000000000000676

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Keir DA, Fontana FY, Robertson TC, et al. Response. Med Sci Sports Exerc. 2015;47(9):19981999. PubMed ID: 26274548 doi:10.1249/MSS.0000000000000677

  • 9.

    Murias JM, Keir DA, Spencer MD, Paterson DH. Sex-related differences in muscle deoxygenation during ramp incremental exercise. Respir Physiol Neurobiol. 2013;189(3):530536. PubMed ID: 23994824 doi:10.1016/j.resp.2013.08.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Iannetta D, Qahtani A, Mattioni Maturana F, Murias JM. The near-infrared spectroscopy-derived deoxygenated haemoglobin breaking-point is a repeatable measure that demarcates exercise intensity domains. J Sci Med Sport. 2017;20(9):873877. PubMed ID: 28254143 doi:10.1016/j.jsams.2017.01.237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bellotti C, Calabria E, Capelli C, Pogliaghi S. Determination of maximal lactate steady state in healthy adults: can NIRS help? Med Sci Sports Exerc. 2013;45(6):12081216. PubMed ID: 23274611 doi:10.1249/MSS.0b013e3182828ab2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Inglis EC, Iannetta D, Murias JM. The plateau in the NIRS-derived [HHb] signal near the end of a ramp incremental test does not indicate the upper limit of O2 extraction in the vastus lateralis. Am J Physiol Regul Integr Comp Physiol. 2017;313:R723R729. PubMed ID: 28931547 doi:10.1152/ajpregu.00261.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Iannetta D, Qahtani A, Millet GY, Murias JM. Quadriceps muscles O2 extraction and EMG breakpoints during a ramp incremental test. Front Physiol. 2017;8:686. PubMed ID: 28970805 doi:10.3389/fphys.2017.00686

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Boone J, Barstow TJ, Celie B, Prieur F, Bourgois J. The interrelationship between muscle oxygenation, muscle activation, and pulmonary oxygen uptake to incremental ramp exercise: influence of aerobic fitness. Appl Physiol Nutr Metab. 2016;41:5562. PubMed ID: 26701120 doi:10.1139/apnm-2015-0261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Broxterman RM, Ade CJ, Craig JC, Wilcox SL, Schlup SJ, Barstow TJ. The relationship between critical speed and the respiratory compensation point: coincidence or equivalence. Eur J Sport Sci. 2015;15(7):631639. PubMed ID: 25307937 doi:10.1080/17461391.2014.966764

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Caen K, Vermeire K, Bourgois J, Boone J. Exercise thresholds on trial: are they really equivalent? Med Sci Sports Exerc. 2018;50(6):12771284. doi:10.1249/MSS.0000000000001547

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Keir DA, Paterson DH, Kowalchuk JM, Murias JM. Using ramp-incremental V ˙ O 2 responses for constant-intensity exercise selection. Appl Physiol Nutr Metab. 2018;43:882892. PubMed ID: 29570982 doi:10.1139/apnm-2017-0826

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Mattioni Maturana F, Keir DA, McLay KM, Murias JM. Can measures of critical power precisely estimate the maximal metabolic steady-state? Appl Physiol Nutr Metab. 2016;41(11):11971203. PubMed ID: 27819154 doi:10.1139/apnm-2016-0248

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Wang R, Fukuda DH, Stout JR, et al. Tracking changes in the upper boundary of the heavy-intensity exercise domain: end-test power versus respiratory compensation point. Kinesiology. 2017;49(1):1521. doi:10.26582/k.49.1.13

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Keir DA, Benson AP, Love LK, Robertson TC, Rossiter HB, Kowalchuk JM. Influence of muscle metabolic heterogenity in determining the VO2p kinetic response to ramp-incremental exercise. J Appl Physiol. 2016;120(5):503513. PubMed ID: 26679614 doi:10.1152/japplphysiol.00804.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Barker T, Poole DC, Noble ML, Barstow TJ. Human critical power-oxygen uptake relationship at different pedalling frequencies. Exp Physiol. 2006;91(3):621632. PubMed ID: 16527863 doi:10.1113/expphysiol.2005.032789

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Scheuermann BW, Kowalchuk JM. Attenuated respiratory compensation during rapidly incremented ramp exercise. Respir Physiol. 1998;114(3):227238. PubMed ID: 9926987 doi:10.1016/S0034-5687(98)00097-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Mattioni Maturana F, Fontana FY, Pogliaghi S, Passfield L, Murias JM. Critical power: how different protocols and models affect its determination. J Sci Med Sport. 2018;21(7):742747. doi:10.1016/j.jsams.2017.11.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Bishop D, Jenkins DG, Howard A. The critical power function is dependent on the duration of predictive tests chosen. Int J Sports Med. 1998;19:125129. PubMed ID: 9562222 doi:10.1055/s-2007-971894

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Pringle J, Jones A. Maximal lactate steady state, critical power and EMG during cycling. Eur J Appl Physiol. 2002;88(3):214226. PubMed ID: 12458364 doi:10.1007/s00421-002-0703-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Beneke R. Methodological aspects of maximal lactate steady state—implications for performance testing. Eur J Appl Physiol. 2003;89(1):9599. PubMed ID: 12627312 doi:10.1007/s00421-002-0783-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Iannetta D, Fontana FY, Maturana M, et al. An equation to predict the maximal lactate steady state from ramp incremental exercise test data in cycling. J Sci Med Sport. 2018;21(12):12741280. PubMed ID: 29803737 doi:10.1016/j.jsams.2018.05.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Spencer MD, Murias JM, Paterson DH. Characterizing the profile of muscle deoxygenation during ramp incremental exercise in young men. Eur J Appl Physiol. 2012;112(9):33493360. PubMed ID: 22270488 doi:10.1007/s00421-012-2323-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):20202027. PubMed ID: 3087938 doi:10.1152/jappl.1986.60.6.2020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Boone J, Koppo K, Bouckaert J. The VO2 response to submaximal ramp cycle exercise: influence of ramp slope and training status. Respir Physiol Neurobiol. 2008;161(3):291297. PubMed ID: 18448396 doi:10.1016/j.resp.2008.03.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Prieur F, Benoit H, Busso T, Castells J, Denis C. Effect of endurance training on the V ˙ O 2-work rate relationship in normoxia and hypoxia. Med Sci Sports Exerc. 2005;37(4):664669. PubMed ID: 15809567 doi:10.1249/01.MSS.0000159140.11938.97

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    McKay BR, Paterson DH, Kowalchuk JM. Effect of short-term high-intensity interval training vs continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. J Appl Physiol. 2009;107(1):128138. PubMed ID: 19443744 doi:10.1152/japplphysiol.90828.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Boone J, Caen K, Vermeire K, Bourgois G, Bourgois JG. The question should be: is HHbBP equivalent to RCP? Med Sci Sports Exerc. 2019;51(4):829. doi:10.1249/MSS.0000000000001850

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Keir DA, Pogliaghi S, Murias JM. Response. Med Sci Sport Exerc. 2019;51(4):830. doi:10.1249/MSS.0000000000001851

  • 35.

    Leo JA, Sabapathy S, Simmonds MJ, Cross TJ. The respiratory compensation point is not a valid surrogate for critical power. Med Sci Sports Exerc. 2017;49(7):14521460. PubMed ID: 28166117 doi:10.1249/MSS.0000000000001226

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Hauser T, Bartsch D, Baumgärtel L, Schulz H. Reliability of maximal lactate-steady-state. Int J Sports Med. 2013;34(3):196199. PubMed ID: 22972242 doi:10.1055/s-0032-1321719

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 450 450 67
Full Text Views 50 50 5
PDF Downloads 36 36 5