The Reliability of Measuring Gross Efficiency During High-Intensity Cycling Exercise

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To evaluate the reliability of calculating gross efficiency (GE) conventionally and using a back extrapolation (BE) method during high-intensity exercise (HIE). Methods: A total of 12 trained participants completed 2 HIE bouts (P1 = 4 min at 80% maximal aerobic power [MAP]; P2 = 4 min at 100%MAP). GE was calculated conventionally in the last 3 minutes of submaximal (50%MAP) cycling bouts performed before and after HIE (Pre50%MAP and Post50%MAP). To calculate GE using BE (BGE), a linear regression of GE submaximal values post-HIE were back extrapolated to the end of the HIE bout. Results: BGE was significantly correlated with Post50%MAP GE in P1 (r = .63; P = .01) and in P2 (r = .85; P = .002). Reliability data for P1 and P2 BGE demonstrate a mean coefficient of variation of 7.8% and 9.8% with limits of agreement of 4.3% and 4.5% in relative GE units, respectively. P2 BGE was significantly lower than P2 Post50%MAP GE (18.1% [1.6%] vs 20.3% [1.7%]; P = .01). Using a declining GE from the BE method, there was a 44% greater anaerobic contribution compared with assuming a constant GE during 4-minute HIE at 100%MAP. Conclusion: HIE acutely reduced BGE at 100%MAP. A greater anaerobic contribution to exercise as well as excess postexercise oxygen consumption at 100%MAP may contribute to this decline in efficiency. The BE method may be a reliable and valid tool in both estimating GE during HIE and calculating aerobic and anaerobic contributions.

Ebreo, Passfield, and Hopker are with the School of Sport and Exercise Sciences, University of Kent, Canterbury, Kent, United Kingdom. Passfield is with the Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.

Hopker (j.g.hopker@kent.ac.uk) is corresponding author.
  • 1.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Appl Physiol. 2008;586(1):35–44. doi:10.1113/jphysiol.2007.143834

    • Search Google Scholar
    • Export Citation
  • 2.

    Hopker JG, Coleman DA, Gregson HC, et al. The influence of training status, age, and muscle fiber type on cycling efficiency and endurance performance. J Appl Physiol. 2013;115(5):723–729. PubMed ID: 23813527 doi:10.1152/japplphysiol.00361.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    de Koning JJ, Noordhof DA, Uitslag TP, Galiart RE, Dodge C, Foster C. An approach to estimating gross efficiency during high-intensity exercise. Int J Sports Physiol Perform. 2013;8(6):682–684. PubMed ID: 23006833 doi:10.1123/ijspp.8.6.682

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Mulder RCM, Noordhof DA, Malterer KR, Foster C, de Koning JJ. Anaerobic work calculated in cycling time trials of different length. Int J Sports Physiol Perform. 2015;10(2):153–159. PubMed ID: 24911592 doi:10.1123/ijspp.2014-0035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hagberg JM, Mullin JP, Nagle FJ. Oxygen consumption during constant-load exercise. J Appl Physiol Respir Environ Exerc Physiol. 1978;45(3):381–384. PubMed ID: 701123 doi:10.1152/jappl.1978.45.3.381

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hagan RD, Weis SE, Raven PB. Effect of pedal rate on cardiorespiratory responses during continuous exercise. Med Sci Sports Exerc. 1992;24(10):1088–1095. PubMed ID: 1435156 doi:10.1249/00005768-199210000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Coyle EF, Sidossis LS, Horowitz JF. Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc. 1992;24:782–788. PubMed ID: 1501563

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hopker JG, O’Grady C, Pageaux B. Prolonged constant load cycling exercise is associated with reduced gross efficiency and increased muscle oxygen uptake. Scand J Med Sci Sports. 2017;27(4):408–417. PubMed ID: 26993076 doi:10.1111/sms.12673

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Noordhof DA, Mulder RCM, Malterer KR, Foster C, de Koning JJ. The decline in gross efficiency in relation to cycling time-trial length. Int J Sports Physiol Perform. 2015;10(1):64–70. PubMed ID: 24911784 doi:10.1123/ijspp.2014-0034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Vanhatalo A, Poole DC, DiMenna FJ, Bailey SJ, Jones AM. Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs all-out sprint exercise. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R700–R707. PubMed ID: 21160059 doi:10.1152/ajpregu.00761.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Noordhof DA, de Koning JJ, van Erp T, et al. The between and within day variation in gross efficiency. Eur J Appl Physiol. 2010;109(6):1209–1218. PubMed ID: 20464413 doi:10.1007/s00421-010-1497-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Serresse O, Lortie G, Bouchard C, Boulay M. Estimation of the contribution of the various energy systems during maximal work of short duration. Int J Sports Med. 2008;09(06):456–460. doi:10.1055/s-2007-1025051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Cohen J. Statistical Power Analysis for the Behavioural Sciences. 2nd ed. Lawrence, NJ: Erlbaum; 1988.

  • 14.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):1–15. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hopker JG, Jobson SA, Gregson HC, Coleman D, Passfield L. Reliability of cycling gross efficiency using the Douglas Bag Method. Med Sci Sports Exerc. 2012;44(2):290–296. PubMed ID: 21796054 doi:10.1249/MSS.0b013e31822cb0d2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Moseley L, Jeukendrup AE. The reliability of cycling efficiency. Med Sci Sports Exerc. 2001;33(4):621–627. PubMed ID: 11283439 doi:10.1097/00005768-200104000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Passfield L, Doust JH. Changes in cycling efficiency and performance after endurance exercise. Med Sci Sports Exerc. 2000;32(11):1935–1941. PubMed ID: 11079525 doi:10.1097/00005768-200011000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 120 120 28
Full Text Views 16 16 4
PDF Downloads 14 14 2