Heat Stress Training Camps for Endurance Sport: A Descriptive Case Study of Successful Monitoring in 2 Ironman Triathletes

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

A common practice among endurance athletes is to purposefully train in hot environments during a “heat stress camp.” However, combined exercise-heat stress poses threats to athlete well-being, and therefore, heat stress training has the potential to induce maladaptation. This case study describes the monitoring strategies used in a successful 3-week heat stress camp undertaken by 2 elite Ironman triathletes, namely resting heart rate variability, self-report well-being, and careful prescription of training based on previously collected physiological data. Despite the added heat stress, training volume very likely increased in both athletes, and training load very likely increased in one of the athletes, while resting heart rate variability and self-report well-being were maintained. There was also some evidence of favorable metabolic changes during routine laboratory testing following the camp. The authors therefore recommend that practitioners working with endurance athletes embarking on a heat stress training camp consider using the simple strategies employed in the present case study to reduce the risk of maladaptation and nonfunctional overreaching.

Maunder, Kilding, and Plews are with Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand. Stevens is with the School of Health and Human Sciences, Southern Cross University, Coffs Harbour, New South Wales, Australia; and the Centre for Athlete Development, Experience & Performance, Southern Cross University, Coffs Harbour, New South Wales, Australia.

Maunder (ed.maunder@aut.ac.nz) is corresponding author.
  • 1.

    Hawley JA, Lundby C, Cotter JD, Burke LM. Maximizing cellular adaptation to endurance exercise in skeletal muscle. Cell Metab. 2018;27(5):962976. doi:10.1016/j.cmet.2018.04.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lim CL, Pyne D, Horn P, et al. The effects of increased endurance training load on biomarkers of heat intolerance during intense exercise in the heat. Appl Physiol Nutr Metab. 2009;34(4):616624. doi:10.1139/H09-021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hazell TJ, Islam H, Townsend LK, Schmale MS, Copeland JL. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: potential mechanisms. Appetite. 2016;98:8088. doi:10.1016/j.appet.2015.12.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hargreaves M, Angus D, Howlett K, Conus NM, Febbraio MA. Effect of heat stress on glucose kinetics during exercise. J Appl Physiol. 1996;81(4):15941597.

  • 5.

    Sylta Ø, Tonnessen E, Seiler S. From heart-rate data to training quantification: a comparison of 3 methods of training-intensity analysis. Int J Sports Physiol Perform. 2014;9(1):100107. doi:10.1123/IJSPP.2013-0298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart-rate variability and training-intensity distribution in elite rowers. Int J Sports Physiol Perform. 2014;9:10261032. doi:10.1123/ijspp.2013-0497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013;43(9):773781. doi:10.1007/s40279-013-0071-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Reeve T, Gordon R, Laursen PB, Lee JKW, Tyler CJ. Impairment of cycling capacity in the heat in well-trained endurance athletes after high-intensity short-term heat acclimation. [published online ahead of print January31, 2019]. Int J Sports Physiol Perform. PubMed ID: 30702375 doi:10.1123/ijspp.2018-0537

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Casadio JR, Kilding AE, Cotter JD, Laursen PB. From lab to real world: heat acclimation considerations for elite athletes. Sports Med. 2017;47(8):14671476.

  • 10.

    Armstrong LE, Pumerantz AC, Fiala KA, et al. Human hydration indices: acute and longitudinal reference values. Int J Sport Nutr Exerc Metab. 2010;20(2):145153. doi:10.1123/ijsnem.20.2.145

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lucía A, Hoyos J, Pérez M, Chicharro JL. Heart rate and performance parameters in elite cyclists: a longitudinal study. Med Sci Sports Exerc. 2000;32(10):17771782. doi:10.1097/00005768-200010000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Newell J, Higgins D, Madden N, et al. Software for calculating blood lactate endurance markers. J Sports Sci. 2007;25(12):14031409. doi:10.1080/02640410601128922.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26(suppl 1):S28S37. doi:10.1055/s-2004-830512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McLean BS, Coutts AJ, Kelly V, McGuigan MR, Cormack S. Neuromuscular, endocrine, and perceptual fatigue responses during different length between-match microcycles in professional rugby league players. Int J Sports Physiol Perform. 2010;5(3):367383. doi:10.1123/ijspp.5.3367

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hopkins WG. A spreadsheet for monitoring an individual’s changes and trend. Sportscience. 2017;21:59.

  • 16.

    Buchheit M. Monitoring training status with HR measures: do all roads lead to Rome? Front Physiol. 2014;5:73. doi:10.3389/fphys.2014.00073

  • 17.

    Plews DJ, Scott B, Altini M, Wood M, Kilding AE, Laursen PB. Comparison of heart-rate-variability recording with smartphone photoplethysmography, Polar H7 chest strap, and electrocardiography. Int J Sports Physiol Perform. 2017;12(10):13241328. doi:10.1123/ijspp.2016-0668

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pallarés JG, Morán-Navarro R, Ortega JF, Fernández-Elías VE, Mora-Rodriguez R. Validity and reliability of ventilatory and blood lactate thresholds in well-trained cyclists. PLoS ONE. 2016;11(9):116. doi:10.1371/journal.pone.0163389

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Maunder E, Podlogar T, Wallis GA. Postexercise fructose-maltodextrin ingestion enhances subsequent endurance capacity. Med Sci Sports Exerc. 2018;50(5):10391045. doi:10.1249/MSS.0000000000001516

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Moseley L, Jeukendrup AE. The reliability of cycling efficiency. Med Sci Sports Exerc. 2001;33(4):621627. doi:10.1097/00005768-200104000-00017

  • 21.

    Liu CT, Brooks GA. Mild heat stress induces mitochondrial biogenesis in C2C12 myotubes. J Appl Physiol. 2012;112(3):354361. doi:10.1152/japplphysiol.00989.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Patton MG, Gillum TL, Szymanski MC, et al. Heat acclimation increases mitochondrial respiration capacity of C2C12 myotubes and protects against LPS-mediated energy deficit. Cell Stress Chaperones. 2018;23(5):871883. doi:10.1007/s12192-018-0894-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 578 578 56
Full Text Views 40 40 1
PDF Downloads 32 32 0