Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To observe changes in performance, physiological, and general kinematic variables induced by the use of wetsuits vs swimsuits in both swimming-pool and swimming-flume conditions. Methods: In a randomized and counterbalanced order, 33 swimmers (26.46 [11.72] y old) performed 2 × 400-m maximal front crawl in a 25-m swimming pool (with wetsuit and swimsuit), and their mean velocities were used later in 2 swimming-flume trials with both suits. Velocity, blood lactate concentration, heart rate (HR), Borg scale (rating of perceived exertion), stroke rate, stroke length (SL), stroke index, and propelling efficiency were evaluated. Results: The 400-m performance in the swimming pool was 0.07 m·s−1 faster when using the wetsuit than when using the swimsuit, evidencing a reduction of ∼6% in time elapsed (P < .001). Maximal HR, maximal blood lactate concentration, rating of perceived exertion, stroke rate, and propelling efficiency were similar when using both swimsuits, but SL and stroke index presented higher values with the wetsuit in both the swimming pool and the swimming flume. Comparing swimming conditions, maximal HR and maximal blood lactate concentration were lower, and SL, stroke index, and propelling efficiency were higher when swimming in the flume than when swimming in the pool with both suits. Conclusions: The 6% velocity improvement was the result of an increase of 4% in SL. Swimmers reduced stroke rate and increased SL to benefit from the hydrodynamic reduction of the wetsuit and increase their swimming efficiency. Wetsuits might be utilized during training seasons to improve adaptations while swimming.

Gay, López-Contreras, and Arellano are with the Aquatics Lab, Physical Education and Sport Dept, Faculty of Sport Sciences, University of Granada, Granada, Spain. Fernandes is with the Center of Research, Education, Innovation and Intervention in Sport, and the Porto Biomechanics Laboratory, University of Porto, Porto, Portugal.

Arellano (arellano@ugr.es) is corresponding author.
  • 1.

    Marculescu C. Swimwear for open water swimming events. FINA Rules Memorandum. 2016. https://www.fina.org/content/fina-approved-swimwear

  • 2.

    Toussaint HM, Bruinink L, Coster R, et al. Effect of a triathlon wet suit on drag during swimming. Med Sci Sports Exerc. 1989;21(3):325328. PubMed ID: 2733583 doi:10.1249/00005768-198906000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Chatard JC, Senegas X, Selles M, Dreanot P, Geyssant A. Wet suit effect—a comparison between competitive swimmers and triathletes. Med Sci Sports Exerc. 1995;27(4):580586. PubMed ID: 7791590 doi:10.1249/00005768-199504000-00017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Parsons L, Day S. Do wet suits affect swimming speed? Br J Sports Med. 1986;20(3):129131. PubMed ID: 3779341 doi:10.1136/bjsm.20.3.129

  • 5.

    Cordain L, Kopriva R. Wetsuits, body density and swimming performance. Br J Sports Med. 1991;25(1):3133. PubMed ID: 1913028 doi:10.1136/bjsm.25.1.31

  • 6.

    De Lucas RD, Balikian P, Neiva CM, Greco CC, Denadai BS. The effects of wet suits on physiological and biomechanical indices during swimming. J Sci Med Sport. 2000;3(1):18. PubMed ID: 10839223 doi:10.1016/S1440-2440(00)80042-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Fernandes RJ, Cardoso CS, Soares SM, Ascensao A, Colaco PJ, Vilas-Boas JP. Time limit and VO2 slow component at intensities corresponding to VO2max in swimmers. Int J Sports Med. 2003;24(8):576581. PubMed ID: 14598193 doi:10.1055/s-2003-43274

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Zacca R, Fernandes RJ, Pyne DB, Castro FA. Swimming training assessment: the critical velocity and the 400 m test for age-group swimmers. J Strength Cond Res. 2016;30(5):13651372. PubMed ID: 26473520 doi:10.1519/JSC.0000000000001239

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Wakayoshi K, Yoshida T, Udo M, et al. A simple method for determining critical speed as swimming fatigue threshold in competitive swimming. Int J Sports Med. 1992;13(05):367371. doi:10.1055/s-2007-1021282

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Trappe TA, Pease DL, Trappe SW, Troup JP, Burke ER. Physiological responses to swimming while wearing a wet suit. Int J Sports Med. 1996;17(2):111114. PubMed ID: 8833712 doi:10.1055/s-2007-972817

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Perrier D, Monteil K. Triathlon wet suit and technical parameters at the start and end of a 1500 m swim. J Appl Biomech. 2004;20(1):313. doi:10.1123/jab.20.1.3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Zamparo P, Bonifazi M, Faina M, et al. Energy cost of swimming of elite long-distance swimmers. Eur J Appl Physiol. 2005;94(5–6):697704. doi:10.1007/s00421-005-1337-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Espinosa HG, Nordsborg N, Thiel DV. Front crawl swimming analysis using accelerometers: a preliminary comparison between pool and flume. Procedia Eng. 2015;112:497501. doi:10.1016/j.proeng.2015.07.231

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Holmér I, Bergh U. Metabolic and thermal response to swimming in water at varying temperatures. J Appl Physiol. 1974;37(5):702705. doi:10.1152/jappl.1974.37.5.702

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Zacca R, Lopes AL, Teixeira BC, da Silva LM, Cardoso C. Lactate peak in youth swimmers: quantity and time interval for measurement after 50-1500 maximal efforts in front crawl. J Physiol. 2014;66:9095.

    • Search Google Scholar
    • Export Citation
  • 16.

    McLean SP, Palmer D, Ice G, Truijens M, Smith JC. Oxygen uptake response to stroke rate manipulation in freestyle swimming. Med Sci Sports Exerc. 2010;42(10):19091913. PubMed ID: 20195179 doi:10.1249/MSS.0b013e3181d9ee87

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Guignard B, Rouard A, Chollet D, et al. Perception and action in swimming: effects of aquatic environment on upper limb inter-segmental coordination. Hum Mov Sci. 2017;55:240254. PubMed ID: 28846856 doi:10.1016/j.humov.2017.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Longo S, Scurati R, Michielon G, Invernizzi PL. Correlation between two propulsion efficiency indices in front crawl swimming. Sport Sci Health. 2008;4(3):6571. doi:10.1007/s11332-008-0069-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Costill D, Kovaleski J, Porter D, Kirwan J, Fielding R, King D. Energy expenditure during front crawl swimming: predicting success in middle-E. Int J Sports Med. 1985;6:266270. PubMed ID: 4055188 doi:10.1055/s-2008-1025849

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins WG. A scale of magnitudes for effect statistics. A New View of Statistics. 2002;502. http://sportsci.org/resource/stats/effectmag.html. Accessed January 11, 2018.

    • Search Google Scholar
    • Export Citation
  • 21.

    Tomikawa M, Nomura T. Relationships between swim performance, maximal oxygen uptake and peak power output when wearing a wetsuit. J Sci Med Sport. 2009;12(2):317322. PubMed ID: 18083064 doi:10.1016/j.jsams.2007.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Trappe TA, Starling RD, Jozsi AC, et al. Thermal responses to swimming in three water temperatures: influence of a wet suit. Med Sci Sports Exerc. 1995;27(7):10141021. PubMed ID: 7564968 doi:10.1249/00005768-199507000-00010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Figueiredo P, Zamparo P, Sousa A, Vilas-Boas JP, Fernandes RJ. An energy balance of the 200 m front crawl race. Eur J Appl Physiol. 2011;111(5):767777. PubMed ID: 20978781 doi:10.1007/s00421-010-1696-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Laffite LP, Vilas-Boas JP, Demarle A, Silva J, Fernandes R, Billat VL. Changes in physiological and stroke parameters during a maximal 400-m free swimming test in elite swimmers. Can J Appl Physiol. 2004;29(S1):S17S31. PubMed ID: 15602082

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Zacca R, Azevedo R, Silveira RP, et al. Comparison of incremental intermittent and time trial testing in age-group swimmers. J Strength Cond Res. 2019;33(3):801810. doi:10.1519/JSC0000000000002087

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Seifert L, Schnitzler C, Bideault G, Alberty M, Chollet D, Toussaint HM. Relationships between coordination, active drag and propelling efficiency in crawl. Hum Mov Sci. 2015;39:5564. doi:10.1016/j.humov.2014.10.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Toussaint HM, Beelen A, Rodenburg A, et al. Propelling efficiency of front-crawl swimming. J Appl Physiol. 1988;65(6):25062512. PubMed ID: 3215850 doi:10.1152/jappl.1988.65.6.2506

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Chatard J-C, Millet G. Effects of wetsuit use in swimming events. Sport Med. 1996;22(2):7075. doi:10.2165/00007256-199622020-00002

All Time Past Year Past 30 Days
Abstract Views 337 337 61
Full Text Views 27 27 3
PDF Downloads 16 16 2