Influence of Immune and Nutritional Biomarkers on Illness Risk During Interval Training

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Intensive training periods may negatively influence immune function, but the immunological consequences of specific high-intensity-training (HIT) prescriptions are not well defined. Purpose: To explore whether 3 different HIT prescriptions influence multiple health-related biomarkers and whether biomarker responses to HIT were associated with upper-respiratory-illness (URI) risk. Methods: Twenty-five male cyclists and triathletes were randomized to 3 HIT groups and completed 12 HIT sessions over 4 wk. Peak oxygen consumption (V˙O2peak) was determined using an incremental cycling protocol, while resting serum biomarkers (cortisol, testosterone, 25[OH]D, and ferritin), salivary immunoglobulin-A (s-IgA), and energy availability (EA) were assessed before and after the training intervention. Participants self-reported upper-respiratory symptoms during the intervention, and episodes of URI were identified retrospectively. Results: Fourteen athletes reported URIs, but there were no differences in incidence, duration, or severity between groups. Increased risk of URI was associated with higher s-IgA secretion rates (odds ratio = 0.90, 90% confidence interval 0.83–0.97). Lower preintervention cortisol and higher EA predicted a 4% increase in URI duration. Participants with higher V˙O2peak reported higher total symptom scores (incidence rate ratio = 1.07, 90% confidence interval 1.01–1.13). Conclusions: Although multiple biomarkers were weakly associated with risk of URI, the direction of associations between s-IgA, cortisol, EA, and URI risk were inverse to previous observations and physiological rationale. There was a cluster of URIs in the first week of the training intervention, but no samples were collected at this time point. Future studies should incorporate more-frequent sample time points, especially around the onset of new training regimens, and include athletes with suspected or known nutritional deficiencies.

Hanstock and Govus are with Swedish Winter Sports Research Center, Inst for Health Sciences, Mid Sweden University, Östersund, Sweden. Stenqvist, Sylta, and Torstveit are with the Faculty of Health and Sport Science, Dept of Public Health, Sport and Nutrition, University of Agder, Kristiansand, Norway.

Hanstock (helen.hanstock@miun.se) is corresponding author.
  • 1.

    Stöggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015;6:295. doi:10.3389/fphys.2015.00295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sport Med. 2013;43(5):313–338. doi:10.1007/s40279-013-0029-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Sylta Ø, Tønnessen E, Sandbakk Ø, et al. Effects of high-intensity training on physiological and hormonal adaptions in well-trained cyclists. Med Sci Sports Exerc. 2017;49(6):1137–1146. PubMed ID: 28121800 doi:10.1249/MSS.0000000000001214

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Raysmith BP, Drew MK. Performance success or failure is influenced by weeks lost to injury and illness in elite Australian track and field athletes: a 5-year prospective study. J Sci Med Sport. 2016;19(10):778–783. PubMed ID: 26839047 doi:10.1016/j.jsams.2015.12.515

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Fahlman MM, Engels H-J. Mucosal IgA and URTI in American college football players: a year longitudinal study. Med Sci Sports Exerc. 2005;37(3):374–380. PubMed ID: 15741834 doi:10.1249/01.MSS.0000155432.67020.88

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hellard P, Avalos M, Guimaraes F, Toussaint J-F, Pyne DB. Training-related risk of common illnesses in elite swimmers over a 4-yr period. Med Sci Sports Exerc. 2015;47(4):698–707. PubMed ID: 25100341 doi:10.1249/MSS.0000000000000461

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Jones CM, Griffiths PC, Mellalieu SD. Training load and fatigue marker associations with injury and illness: a systematic review of longitudinal studies. Sport Med. 2017;47(5):943–974. doi:10.1007/s40279-016-0619-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Gleeson M, Bishop N, Oliveira M, McCauley T, Tauler P, Muhamad AS. Respiratory infection risk in athletes: association with antigen-stimulated IL-10 production and salivary IgA secretion. Scand J Med Sci Sports. 2012;22(3):410–417. PubMed ID: 21385218 doi:10.1111/j.1600-0838.2010.01272.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bermon S, Castell LM, Calder PC, et al. Consensus statement immunonutrition and exercise. Exerc Immunol Rev. 2017;23:8–50. PubMed ID: 28224969

  • 10.

    Drew MK, Vlahovich N, Hughes D, et al. A multifactorial evaluation of illness risk factors in athletes preparing for the summer Olympic Games. J Sci Med Sport. 2017;20(8):745–750. PubMed ID: 28385561 doi:10.1016/j.jsams.2017.02.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Svendsen IS, Taylor IM, Tønnessen E, Bahr R, Gleeson M. Training-related and competition-related risk factors for respiratory tract and gastrointestinal infections in elite cross-country skiers. Br J Sports Med. 2016;50(13):809–815. PubMed ID: 26941278 doi:10.1136/bjsports-2015-095398

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8:111–122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Torstveit MK, Fahrenholtz I, Stenqvist TB, Sylta Ø, Melin A. Within-day energy deficiency and metabolic perturbation in male endurance athletes. Int J Sport Nutr Exerc Metab. 2018;28(4):419–427. PubMed ID: 29405793 doi:10.1123/ijsnem.2017-0337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Crouter SE, Churilla JR, Bassett DR. Accuracy of the Actiheart for the assessment of energy expenditure in adults. Eur J Clin Nutr. 2008;62(6):704–711. PubMed ID: 17440515 doi:10.1038/sj.ejcn.1602766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Seiler S, Jøranson K, Olesen BV, Hetlelid KJ. Adaptations to aerobic interval training: interactive effects of exercise intensity and total work duration. Scand J Med Sci Sport. 2013;23(1):74–83. doi:10.1111/j.1600-0838.2011.01351.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Jackson GG, Dowling HF, Spiesman IG, Boand AV. Transmission of the common cold to volunteers under controlled conditions. AMA Arch Intern Med. 1958;101:267–278. PubMed ID: 13497324 doi:10.1001/archinte.1958.00260140099015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hanstock HG, Walsh NP, Edwards JP, et al. Tear fluid SIgA as a noninvasive biomarker of mucosal immunity and common cold risk. Med Sci Sports Exerc. 2016;48(3):569–577. PubMed ID: 26496418 doi:10.1249/MSS.0000000000000801

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    R Core Development Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

    • Search Google Scholar
    • Export Citation
  • 19.

    Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6(2):461–464. doi:10.1214/aos/1176344136

  • 20.

    Bramley TJ, Lerner D, Sarnes M. Productivity losses related to the common cold. J Occup Environ Med. 2002;44(9):822–829. PubMed ID: 12227674 doi:10.1097/00043764-200209000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Drew MK, Finch CF. The relationship between training load and injury, illness and soreness: a systematic and literature review. Sport Med. 2016;46(6):861–883. doi:10.1007/s40279-015-0459-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Neville V, Gleeson M, Folland JP. Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med Sci Sports Exerc. 2008;40(7):1228–1236. PubMed ID: 18580401 doi:10.1249/MSS.0b013e31816be9c3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Born DP, Zinner C, Sperlich B. The mucosal immune function is not compromised during a period of high-intensity interval training. Is it time to reconsider an old assumption? Front Physiol. 2017;8:1–9. doi:10.3389/fphys.2017.00485

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Campbell JP, Turner JE. Debunking the myth of exercise-induced immune suppression : redefining the impact of exercise on immunological health across the lifespan. Front Immunol. 2018;9:1–21. doi:10.3389/fimmu.2018.00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hough J, Robertson C, Gleeson M. Blunting of exercise-induced salivary testosterone in elite-level triathletes with a 10-day training camp. Int J Sports Physiol Perform. 2015;10(7):935–938. PubMed ID: 25710620 doi:10.1123/ijspp.2014-0360

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Ihalainen JK, Schumann M, Häkkinen K, Mero AA. Mucosal immunity and upper respiratory tract symptoms in recreational endurance runners. Appl Physiol Nutr Metab. 2016;41(1):96–102. PubMed ID: 26701121 doi:10.1139/apnm-2015-0242

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mountjoy M, Burke L, Ackerman KE, et al. International Olympic Committee (IOC) consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med. 2018;28(4):316–331. doi:10.1136/bjsports-2018-099193

    • Search Google Scholar
    • Export Citation
  • 28.

    He C-S, Aw Yong XH, Walsh NP, Gleeson M. Is there an optimal vitamin D status for immunity in athletes and military personnel? Exerc Immunol Rev. 2016;22(63):42–64. PubMed ID: 26853300

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fallon KE. Utility of hematological and iron-related screening in elite athletes. Clin J Sport Med. 2004;14(3):145–152. PubMed ID: 15166903 doi:10.1097/00042752-200405000-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bermon S. Airway inflammation and upper respiratory tract infection in athletes: is there a link? Exerc Immunol Rev. 2007;13:6–14. PubMed ID: 18198657

    • Search Google Scholar
    • Export Citation
  • 31.

    Spence L, Brown WJ, Pyne DB, et al. Incidence, etiology, and symptomatology of upper respiratory illness in elite athletes. Med Sci Sports Exerc. 2007;39(4):577–586. PubMed ID: 17414793 doi:10.1249/mss.0b013e31802e851a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Edwards JP, Walsh NP, Diment PC, Roberts R. Anxiety and perceived psychological stress play an important role in the immune response after exercise. Exerc Immunol Rev. 2018;24:26–34. PubMed ID: 29461966

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 109 109 33
Full Text Views 24 24 3
PDF Downloads 17 17 1