Respiratory Frequency as a Marker of Physical Effort During High-Intensity Interval Training in Soccer Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Variables currently used in soccer training monitoring fail to represent the physiological demand of the player during movements like accelerations, decelerations, and directional changes performed at high intensity. We tested the hypothesis that respiratory frequency (fR) is a marker of physical effort during soccer-related high-intensity exercise. Methods: A total of 12 male soccer players performed a preliminary intermittent incremental test and 2 shuttle-run high-intensity interval training (HIIT) protocols, in separate visits. The 2 HIIT protocols consisted of 12 repetitions over 9 minutes and differed in the work-to-recovery ratio (15:30 vs 30:15 s). Work rate was self-paced by participants to achieve the longest possible total distance in each HIIT protocol. Results: Work-phase average metabolic power was higher (P < .001) in the 15:30-second protocol (31.7 [3.0] W·kg−1) compared with the 30:15-second protocol (22.8 [2.0] W·kg−1). Unlike heart rate and oxygen uptake, fR showed a fast response to the work–recovery alternation during both HIIT protocols, resembling changes in metabolic power even at supramaximal intensities. Large correlations (P < .001) were observed between fR and rating of perceived exertion during both 15:30-second (r = .87) and 30:15-second protocols (r = .85). Conclusions: Our findings suggest that fR is a good marker of physical effort during shuttle-run HIIT in soccer players. These findings have implications for monitoring training in soccer and other team sports.

The authors are with the Dept of Movement, Human and Health Sciences, University of Rome “Foro Italico,” Rome, Italy.

Nicolò (andrea.nicolo@yahoo.com) is corresponding author.
  • 1.

    Akenhead R, Nassis GP. Training load and player monitoring in high-level football: current practice and perceptions. Int J Sports Physiol Perform. 2016;11(5):587593. PubMed ID: 26456711 doi:10.1123/ijspp.2015-0331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Osgnach C, Poser S, Bernardini R, Rinaldo R, di Prampero PE. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc. 2010;42(1):170178. PubMed ID: 20010116 doi:10.1249/MSS.0b013e3181ae5cfd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Soligard T, Schwellnus M, Alonso JM, et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 2016;50(17):10301041. PubMed ID: 27535989 doi:10.1136/bjsports-2016-096581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Alexandre D, da Silva CD, Hill-Haas S, et al. Heart rate monitoring in soccer: interest and limits during competitive match play and training, practical application. J Strength Cond Res. 2012;26(10):28902906. PubMed ID: 22130401 doi:10.1519/JSC.0b013e3182429ac7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Dellal A, Keller D, Carling C, Chaouachi A, Wong DP, Chamari K. Physiologic effects of directional changes in intermittent exercise in soccer players. J Strength Cond Res. 2010;24(12):32193226. PubMed ID: 19996785 doi:10.1519/JSC.0b013e3181b94a63

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Fisher JP, Young CN, Fadel PJ. Autonomic adjustments to exercise in humans. Compr Physiol. 2015;5(2):475512. PubMed ID: 25880502 doi:10.1002/cphy.c140022

  • 7.

    Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):10421047. PubMed ID: 15179175 doi:10.1249/01.MSS.0000128199.23901.2F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Buchheit M, Manouvrier C, Cassirame J, Morin JB. Monitoring locomotor load in soccer: is metabolic power, powerful? Int J Sports Med. 2015;36(14):11491155. PubMed ID: 26393813 doi:10.1055/s-00000028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hader K, Mendez-Villanueva A, Palazzi D, Ahmaidi S, Buchheit M. Metabolic power requirement of change of direction speed in young soccer players: not all is what it seems. PLoS ONE. 2016;11(3):e0149839. PubMed ID: 26930649 doi:10.1371/journal.pone.0149839

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Brown DM, Dwyer DB, Robertson SJ, Gastin PB. Metabolic power method: underestimation of energy expenditure in field-sport movements using a global positioning system tracking system. Int J Sports Physiol Perform. 2016;11(8):10671073. PubMed ID: 26999381 doi:10.1123/ijspp.2016-0021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Nicolò A, Massaroni C, Passfield L. Respiratory frequency during exercise: the neglected physiological measure. Front Physiol. 2017;8:922. PubMed ID: 29321742 doi:10.3389/fphys.2017.00922

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Nicolò A, Marcora SM, Bazzucchi I, Sacchetti M. Differential control of respiratory frequency and tidal volume during high-intensity interval training. Exp Physiol. 2017;102(8):934949. PubMed ID: 28560751 doi:10.1113/EP086352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Nicolò A, Bazzucchi I, Haxhi J, Felici F, Sacchetti M. Comparing continuous and intermittent exercise: an “Isoeffort” and “Isotime” approach. PLoS ONE. 2014;9(4):e94990. PubMed ID: 24736313 doi:10.1371/journal.pone.0094990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Nicolò A, Girardi M, Bazzucchi I, Felici F, Sacchetti M. Respiratory frequency and tidal volume during exercise: differential control and unbalanced interdependence. Physiol Rep. 2018;6(21):e13908. PubMed ID: 30393984 doi:10.14814/phy2.13908

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Nicolò A, Marcora SM, Sacchetti M. Respiratory frequency is strongly associated with perceived exertion during time trials of different duration. J Sports Sci. 2016;34(13):11991206. PubMed ID: 30393984 doi:10.1080/02640414.2015.1102315

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Nicolò A, Bazzucchi I, Lenti M, Haxhi J, Scotto di Palumbo A, Sacchetti M. Neuromuscular and metabolic responses to high-intensity intermittent cycling protocols with different work-to-rest ratios. Int J Sports Physiol Perform. 2014;9(1):151160. PubMed ID: 23628754 doi:10.1123/ijspp.2012-0289

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bechbache RR, Duffin J. The entrainment of breathing frequency by exercise rhythm. J Physiol. 1977;272(3):553561. PubMed ID: 592202 doi:10.1113/jphysiol.1977.sp012059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Buchheit M. The 30-15 intermittent fitness test: accuracy for individualizing interval training of young intermittent sport players. J strength Cond Res. 2008;22(2):365374. PubMed ID: 18550949 doi:10.1519/JSC.0b013e3181635b2e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Borg G. Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics; 1998.

  • 20.

    Nicolò A, Girardi M. The physiology of interval training: a new target to HIIT. J Physiol. 2016;594(24):71697170. PubMed ID: 27976397 doi:10.1113/JP273466

  • 21.

    Passfield L, Hopker JG. A mine of information: can sports analytics provide wisdom from your data? Int J Sports Physiol Perform. 2017;12(7):851855. PubMed ID: 27967295 doi:10.1123/ijspp.2016-0644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Buchheit M, Al Haddad H, Millet GP, Lepretre PM, Newton M, Ahmaidi S. Cardiorespiratory and cardiac autonomic responses to 30-15 intermittent fitness test in team sport players. J strength Cond Res. 2009;23(1):93100. PubMed ID: 19057401 doi:10.1519/JSC.0b013e31818b9721

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cohen J. Statistical Power Analysis for the Behavioural Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 24.

    Bland JM, Altman DG. Calculating correlation coefficients with repeated observations: part 1—correlation within subjects. BMJ. 1995;310(6977):446. PubMed ID: 7873953 doi:10.1136/bmj.310.6977.446

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    di Prampero PE, Botter A, Osgnach C. The energy cost of sprint running and the role of metabolic power in setting top performances. Eur J Appl Physiol. 2015;115(3):451469. PubMed ID: 25549786 doi:10.1007/s00421-014-3086-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Osgnach C, Paolini E, Roberti V, Vettor M, di Prampero PE. Metabolic power and oxygen consumption in team sports: a brief response to Buchheit et al. Int J Sports Med. 2016;37(1):7781. PubMed ID: 26742014 doi:10.1055/s-00000028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Robertson RJ, Noble BJ. Perception of physical exertion: methods, mediators, and applications. Exerc Sport Sci Rev. 1997;25:407452. PubMed ID: 9213100 doi:10.1249/00003677-199700250-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Dai T, Liu J, Sahgal V, Brown R, Yue G. Relationship between muscle output and functional MRI-measured brain activation. Exp Brain Res. 2001;140(3):290300. PubMed ID: 11681304 doi:10.1007/s002210100815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Siemionow V, Yue GH, Ranganathan VK, Liu JZ, Sahgal V. Relationship between motor activity-related cortical potential and voluntary muscle activation. Exp brain Res. 2000;133(3):303311. PubMed ID: 10958520 doi:10.1007/s002210000382

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    de Morree HM, Klein C, Marcora SM. Cortical substrates of the effects of caffeine and time-on-task on perception of effort. J Appl Physiol. 2014;117(12):15141523. PubMed ID: 25342703 doi:10.1152/japplphysiol.00898.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Liu JZ, Shan ZY, Zhang LD, Sahgal V, Brown RW, Yue GH. Human brain activation during sustained and intermittent submaximal fatigue muscle contractions: an fMRI study. J Neurophysiol. 2003;90(1):300312. PubMed ID: 12634278 doi:10.1152/jn.00821.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Marcora SM. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J Appl Physiol. 2009;106(6):20602062. PubMed ID: 18483166 doi:10.1152/japplphysiol.90378.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Zénon A, Sidibé M, Olivier E. Disrupting the supplementary motor area makes physical effort appear less effortful. J Neurosci. 2015;35(23):87378744. PubMed ID: 26063908 doi:10.1523/JNEUROSCI.3789-14.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kim J-H, Roberge R, Powell JB, Shafer AB, Jon Williams W. Measurement accuracy of heart rate and respiratory rate during graded exercise and sustained exercise in the heat using the Zephyr BioHarness. Int J Sports Med. 2013;34(6):497501. PubMed ID: 23175181

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hailstone J, Kilding AE. Reliability and validity of the ZephyrTM BioHarnessTM to measure respiratory responses to exercise. Meas Phys Educ Exerc Sci. 2011;15(4):293300. doi:10.1080/1091367X.2011.615671

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1020 1020 53
Full Text Views 27 27 0
PDF Downloads 15 15 0