Effects of an Eccentric Hamstrings Training on Components of Physical Performance in Young Female Handball Players

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Helmi Chaabene
Search for other papers by Helmi Chaabene in
Current site
Google Scholar
PubMed
Close
,
Yassine Negra
Search for other papers by Yassine Negra in
Current site
Google Scholar
PubMed
Close
,
Jason Moran
Search for other papers by Jason Moran in
Current site
Google Scholar
PubMed
Close
,
Olaf Prieske
Search for other papers by Olaf Prieske in
Current site
Google Scholar
PubMed
Close
,
Senda Sammoud
Search for other papers by Senda Sammoud in
Current site
Google Scholar
PubMed
Close
,
Rodrigo Ramirez-Campillo
Search for other papers by Rodrigo Ramirez-Campillo in
Current site
Google Scholar
PubMed
Close
, and
Urs Granacher
Search for other papers by Urs Granacher in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: This study examined the effects of an 8-week Nordic hamstring exercise (NHE) training on components of physical performance in young female handball players. Methods: Participants were allocated to an experimental group (EG; n = 10; age: 15.9 [0.2] y) and a control group (CG; n = 9; age: 15.9 [0.3] y). The EG performed NHE (2–3 sessions/wk) in replacement of some handball-specific drills, whereas the CG followed regular handball training. Pretraining and posttraining tests were carried out for the assessment of sprint speed (5 m, 10 m, and 20 m), jump performance (countermovement jump [CMJ] height), change-of-direction (t test), and repeated-sprint ability (RSA total time [RSAtotal], RSA best time [RSAbest], and RSA fatigue index [RSAFI]). Data were analyzed using magnitude-based inferences. Results: Within-group analyses for the EG showed moderate performance improvements for 5, 10, and 20 m (effect size [ES] = 0.68–0.82), t test (ES = 0.74), and CMJ (ES = 0.85). Trivial to small improvements were observed for RSA (ES = −0.06 to 0.35). For the CG, within-group outcomes showed performance decrements with moderate (t test [ES = 0.71]), small (5 m [ES = 0.46] and RSAbest [ES = 0.20]), and trivial magnitude (10 m [ES = 0.10], 20 m [ES = 0.16], and RSAtotal [ES = 0.00]). Furthermore, trivial to small performance improvements were found for CMJ (ES = 0.10) and RSAFI (ES = 0.5). Between-group analyses revealed small to large effects in favor of EG for 5 m (ES = 1.07), 10 m (ES = 0.66), 20 m (ES = 0.53), t test (ES = 1.38), and RSA (ES = 0.68–0.78). A trivial between-group difference was demonstrated for CMJ (ES = −0.01). Conclusions: The NHE training intervention, in replacement of some handball-specific drills, was more effective than regular handball training in improving physical performance (ie, linear sprint time, jumping, change-of-direction, and RSA) in young female handball players.

Chaabene, Prieske, and Granacher are with the Div of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany. Chaabene is also with the High Inst of Sports and Physical Education of Kef, University of Jendouba, Jendouba, Tunisia. Negra and Sammoud are with Research Unit, “Sport Performance, Health & Society,” Higher Inst of Sports and Physical Education of Ksar Said, University of Manouba, Tunis, Tunisia. Moran is with the Dept of Sport, University Centre Hartpury (University of the West of England), Gloucestershire, United Kingdom. Ramirez-Campillo is with the Laboratory of Human Performance, Research Nucleus in Health, Physical Activity and Sport, Quality of Life and Wellness Research Group, Dept of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile.

Chaabene (chaabanehelmi@hotmail.fr) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Gorostiaga EM, Granados C, Ibanez J, Izquierdo M. Differences in physical fitness and throwing velocity among elite and amateur male handball players. Int J Sports Med. 2005;26(3):225232. PubMed ID: 15776339 doi:10.1055/s-2004-820974

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Pereira LA, César C, Abad C, et al. Differences in speed and power capacities between female national college team and national Olympic team handball athletes. J Hum Kinet. 2018;63(1):8594. doi:10.2478/hukin-2018-0009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Izquierdo M, Hakkinen K, Gonzalez-Badillo JJ, Ibanez J, Gorostiaga EM. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur J Appl Physiol. 2002;87(3):264271. PubMed ID: 12111288 doi:10.1007/s00421-002-0628-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Moran J, Sandercock G, Ramirez-Campillo R, Clark CCT, Fernandes JFT, Drury B. A meta-analysis of resistance training in female youth: its effect on muscular strength, and shortcomings in the literature. Sports Med. 2018;48(7):16611671. PubMed ID: 29626334 doi:10.1007/s40279-018-0914-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Douglas J, Pearson S, Ross A, McGuigan M. Chronic adaptations to eccentric training: a systematic review. Sports Med. 2017;47(5):917941. PubMed ID: 27647157 doi:10.1007/s40279-016-0628-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Elmer S, Hahn S, McAllister P, Leong C, Martin J. Improvements in multi-joint leg function following chronic eccentric exercise. Scand J Med Sci Sports. 2012;22(5):653661. PubMed ID: 21410545 doi:10.1111/j.1600-0838.2011.01291.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Jones PA, Thomas C, Dos’Santos T, McMahon JJ, Graham-Smith P. The role of eccentric strength in 180° turns in female soccer players. Sports. 2017;5(2):42. doi:10.3390/sports5020042

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Al Attar WSA, Soomro N, Sinclair PJ, Pappas E, Sanders RH. Effect of injury prevention programs that include the Nordic hamstring exercise on hamstring injury rates in soccer players: a systematic review and meta-analysis. Sports Med. 2017;47(5):907916. PubMed ID: 27752982 doi:10.1007/s40279-016-0638-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Morin JB, Gimenez P, Edouard P, et al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404. PubMed ID: 26733889 doi:10.3389/fphys.2015.00404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ishoi L, Holmich P, Aagaard P, Thorborg K, Bandholm T, Serner A. Effects of the Nordic hamstring exercise on sprint capacity in male football players: a randomized controlled trial. J Sports Sci. 2018;36(14):16631672. PubMed ID: 29192837 doi:10.1080/02640414.2017.1409609

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bourne MN, Timmins RG, Opar DA, et al. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2018;48(2):251267. PubMed ID: 29116573 doi:10.1007/s40279-017-0796-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mjolsnes R, Arnason A, Osthagen T, Raastad T, Bahr R. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports. 2004;14(5):311317. PubMed ID: 15387805 doi:10.1046/j.1600-0838.2003.367.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Krommes K, Petersen J, Nielsen M, Aagaard P, Hölmich P, Thorborg K. Sprint and jump performance in elite male soccer players following a 10-week Nordic hamstring exercise protocol: a randomised pilot study. BMC Res Notes. 2017;10(1):669.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Chaabene H, Prieske O, Negra Y, Granacher U. Change of direction speed: toward a strength training approach with accentuated eccentric muscle actions. Sports Med. 2018;48(8):17731779. PubMed ID: 29594958 doi:10.1007/s40279-018-0907-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Negra Y, Chaabene H, Hammami M, Hachana Y, Granacher U. Effects of high-velocity resistance training on athletic performance in prepuberal male soccer athletes. J Strength Cond Res. 2016;30(12):32903297. PubMed ID: 27050241 doi:10.1519/JSC.0000000000001433

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rampinini E, Bishop D, Marcora S, Ferrari Bravo D, Sassi R, Impellizzeri FM. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int J Sports Med. 2007;28:228235. PubMed ID: 17024621 doi:10.1055/s-2006-924340

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Padulo J, Tabben M, Ardigò LP, et al. Repeated sprint ability related to recovery time in young soccer players. Res Sports Med. 2015;23:412423. PubMed ID: 26274891 doi:10.1080/15438627.2015.1076419

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Lovell R, Siegler JC, Knox M, Brennan S, Marshall PW. Acute neuromuscular and performance responses to Nordic hamstring exercises completed before or after football training. J Sports Sci. 2016;34(24):22862294. PubMed ID: 27267402 doi:10.1080/02640414.2016.1191661

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hopkins WG. A scale of magnitude for effect statistics. In: Hopkins WG, ed. A New View of Statistics. Melbourne, Australia; 2002: 502.

  • 20.

    Hopkins WG. How to interpret changes in an athletic performance test. Sportscience. 2004;8:17.

  • 21.

    Hopkins WG. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a P value. Sportscience. 2017;21.

    • Search Google Scholar
    • Export Citation
  • 22.

    Manchado C, Tortosa-Martinez J, Vila H, Ferragut C, Platen P. Performance factors in women’s team handball: physical and physiological aspects—a review. J Strength Cond Res. 2013;27(6):17081719. PubMed ID: 23439330 doi:10.1519/JSC.0b013e3182891535

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hunter JP, Marshall RN, McNair PJ. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. J Appl Biomech. 2005;21(1):3143. PubMed ID: 16131703 doi:10.1123/jab.21.1.31

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2003;13(4):244250. PubMed ID: 12859607 doi:10.1034/j.1600-0838.2003.00312.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ono T, Higasgihara A, Shinohara J, Hirose N, Fukubayashi T. Estimation of tensile force in the hamstring muscles during overground sprinting. Int J Sports Med. 2015;36(2):163168. PubMed ID: 25254895 doi:10.1055/s-0034-1385865

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med. 2012;42(3):209226. PubMed ID: 22239734 doi:10.2165/11594800-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Thelen DG, Chumanov ES, Best TM, Swanson SC, Heiderscheit BC. Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting. Med Sci Sports Exerc. 2005;37(11):19311938. doi:10.1249/01.mss.0000176674.42929.de

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bourne MN, Duhig SJ, Timmins RG, et al. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: implications for injury prevention. Br J Sports Med. 2017;51:469477. PubMed ID: 27660368 doi:10.1136/bjsports-2016-096130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ribeiro-Alvares JB, Marques VB, Vaz MA, Baroni BM. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res. 2018;32(5):12541262. PubMed ID: 28459795 doi:10.1519/JSC.0000000000001975

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Aagaard P. Training-induced changes in neural function. Exerc Sport Sci Rev. 2003;31(2):6167. PubMed ID: 12715968 doi:10.1097/00003677-200304000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Luteberget LS, Trollerud HP, Spencer M. Physical demands of game-based training drills in women’s team handball. J Sports Sci. 2017;36(5):592598. doi:10.1080/02640414.2017.1325964

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    de Hoyo M, Sanudo B, Carrasco L, Mateo-Cortes J, Dominguez-Cobo S, Fernandes O, et al. Effects of 10-week eccentric overload training on kinetic parameters during change of direction in football players. J Sports Sci. 2016;34(14):13801387. PubMed ID: 26963941 doi:10.1080/02640414.2016.1157624

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Greig M, Naylor J. The efficacy of angle-matched isokinetic knee flexor and extensor strength parameters in predicting agility test performance. Int J Sports Phys Ther. 2017;12(5):728736. PubMed ID: 29181250 doi:10.26603/ijspt20170728

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Andrade DC, Manzo O, Beltrán AR, et al. Kinematic and neuromuscular measures of intensity during plyometric jumps. [published online ahead of print August 15, 2017]. J Strength Cond Res. PubMed ID: 28820857 doi:10.1519/JSC.0000000000002143

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Núñez FJ, Santalla A, Carrasquila I, Asian JA, Reina JI, Suarez-Arrones LJ. The effects of unilateral and bilateral eccentric overload training on hypertrophy, muscle power and COD performance, and its determinants, in team sport players. PLoS ONE. 2018;13(3):e0193841. doi:10.1371/journal.pone.0193841

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Pappas E, Hagins M, Sheikhzadeh A, Nordin M, Rose D. Biomechanical differences between unilateral and bilateral landings from a jump: gender differences. Clin J Sport Med. 2007;17(4):263268. PubMed ID: 17620779 doi:10.1097/JSM.0b013e31811f415b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Michalsik LB, Aagaard P, Madsen K. Locomotion characteristics and match-induced impairments in physical performance in male elite team handball players. Int J Sports Med. 2013;34(7):590599. PubMed ID: 23258606 doi:10.1055/s-0032-1329989

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Spencer M, Bishop D, Dawson B, Goodman C. Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med. 2005;35(12):10251044. PubMed ID: 16336007 doi:10.2165/00007256-200535120-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4831 1046 88
Full Text Views 95 16 2
PDF Downloads 95 22 6