Use of Numerically Blinded Ratings of Perceived Exertion in Soccer: Assessing Concurrent and Construct Validity

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Ric Lovell
Search for other papers by Ric Lovell in
Current site
Google Scholar
PubMed
Close
,
Sam Halley
Search for other papers by Sam Halley in
Current site
Google Scholar
PubMed
Close
,
Jason Siegler
Search for other papers by Jason Siegler in
Current site
Google Scholar
PubMed
Close
,
Tony Wignell
Search for other papers by Tony Wignell in
Current site
Google Scholar
PubMed
Close
,
Aaron J. Coutts
Search for other papers by Aaron J. Coutts in
Current site
Google Scholar
PubMed
Close
, and
Tim Massard
Search for other papers by Tim Massard in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To examine the concurrent and construct validity of numerically blinded ratings of perceived exertion (RPEs). Methods: A total of 30 elite male youth soccer players (age 16.7 [0.5] y) were monitored during training and matches over a 17-wk in-season period. The players’ external loads were determined via raw 10-Hz global positioning system. Heart rate (HR) was collected continuously and expressed as Bannister and Edwards training impulses, and minutes >80% of the players predetermined the maximum HR by the Yo-Yo Intermittent Recovery Test Level 1. RPE was collected confidentially 10 to 15 min after training/matches using 2 methods: (1) a traditional verbal response to the 0 to 100 category-ratio “centiMax” scale (RPE) and (2) numerically blinded RPE centiMax scale (RPEblind) with the response selected manually via a 5 × 7-in tablet “slider.” The RPE and RPEblind were divided by 10 and multiplied by the duration to derive the sessional RPE. Linear mixed models compared ratings, and within-subject repeated-measures correlations assessed the sessional RPE versus HR and external load associations. Results: There were no differences between the RPE and RPEblind (0.19; 95% confidence intervals, −0.59 to 0.20 au, P = .326) or their session values (13.5; 95% confidence intervals, −17.0 to 44.0 au, P = .386), and the ratings were nearly perfectly correlated (r = .96). The associations between the sessional RPE versus HR and external load metrics were large to very large (r = .65–.81), with no differences between the RPE methods (P ≥ .50). The RPEblind also reduced verbal anchor clustering and integer bias by 11% and 50%, respectively. Conclusions: RPEblind demonstrated concurrent and construct validity versus the traditional method, and may be used in situations where practitioners have concerns regarding the authenticity of athlete ratings.

Lovell, Halley, Siegler, and Massard are with the School of Science and Health, Western Sydney University, Penrith, NSW, Australia. Halley, Wignell, and Massard are with Westfields Sports High School, Fairfield West, NSW, Australia. Coutts is with the University of Technology Sydney, Moore Park, NSW, Australia.

Lovell (R.Lovell@westernsydney.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 2.

    Akenhead R, Nassis GP. Training load and player monitoring in high-level football: current practice and perceptions. Int J Sports Physiol Perform. 2016;11(5):587593. PubMed ID: 26456711 doi:10.1123/ijspp.2015-0331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Borg G. Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics; 1998.

  • 5.

    Weston M, Siegler J, Bahnert A, McBrien J, Lovell R. The application of differential ratings of perceived exertion to Australian Football League matches. J Sci Med Sport. 2015;18(6):704708. PubMed ID: 25241705 doi:10.1016/j.jsams.2014.09.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Weston M. Difficulties in determining the dose-response nature of competitive soccer matches. J Athl Enhanc. 2013;2:1. doi:10.4172/2324-9080.1000e107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Wrigley R, Drust B, Stratton G, Scott M, Gregson W. Quantification of the typical weekly in-season training load in elite junior soccer players. J Sports Sci. 2012;30(15):15731580. PubMed ID: 22852843 doi:10.1080/02640414.2012.709265

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):10421047. PubMed ID: 15179175 doi:10.1249/01.MSS.0000128199.23901.2F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Gregson W, Drust B, Atkinson G, Salvo VD. Match-to-match variability of high-speed activities in premier league soccer. Int J Sports Med. 2010;31(4):237242. PubMed ID: 20157871 doi:10.1055/s-0030-1247546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Carling C, Bradley P, McCall A, Dupont G. Match-to-match variability in high-speed running activity in a professional soccer team. J Sports Sci. 2016;34(24):22152223. PubMed ID: 27144879 doi:10.1080/02640414.2016.1176228

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Pageaux B. Perception of effort in exercise science: definition, measurement and perspectives. Eur J Sport Sci. 2016;16(8):885894. PubMed ID: 27240002 doi:10.1080/17461391.2016.1188992

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Borg E, Borg G. A comparison of AME and CR100 for scaling perceived exertion. Acta Psychol. 2002;109(2):157175. doi:10.1016/S0001-6918(01)00055-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Borg E, Kaijser L. A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports. 2006;16(1):5769. PubMed ID: 16430682 doi:10.1111/j.1600-0838.2005.00448.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Noble BJ, Borg GA, Jacobs I, Ceci R, Kaiser P. A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. Med Sci Sports Exerc. 1983;15(6):523528. PubMed ID: 6656563 doi:10.1249/00005768-198315060-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Barrett S, McLaren S, Spears I, Ward P, Weston M. The influence of playing position and contextual factors on soccer players’ match differential ratings of perceived exertion: a preliminary investigation. Sports. 2018;6(1):13. doi:10.3390/sports6010013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    McLaren SJ, Smith A, Spears IR, Weston M. A detailed quantification of differential ratings of perceived exertion during team-sport training. J Sci Med Sport. 2017;20(3):290295. PubMed ID: 27451269 doi:10.1016/j.jsams.2016.06.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    McLaren SJ, Smith A, Bartlett JD, Spears IR, Weston M. Differential training loads and individual fitness responses to pre-season in professional rugby union players. J Sports Sci. 2018;36(21):24382446. PubMed ID: 29629620 doi:10.1080/02640414.2018.1461449

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Fanchini M, Ferraresi I, Modena R, Schena F, Coutts AJ, Impellizzeri FM. Use of CR100 scale for session rating of perceived exertion in soccer and its interchangeability with the CR10. Int J Sports Physiol Perform. 2016;11(3):388392. PubMed ID: 26309332 doi:10.1123/ijspp.2015-0273

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Banister EW. Modeling elite athletic performance. In: Green HJ, McDougal JD, Wenger HA, eds. Physiological Testing of the High-Performance Athlete. Champaign, IL: Human Kinetics; 1991:403424.

    • Search Google Scholar
    • Export Citation
  • 20.

    Edwards S. The Heart Rate Monitor Book. Sacramento, CA: Fleet Feet Press; 1993.

  • 21.

    Scott D, Lovell R. Individualisation of speed thresholds does not enhance the dose-response determination in football training. J Sports Sci. 2018;36(13):15231532. PubMed ID: 29099673 doi:10.1080/02640414.2017.1398894

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Osgnach C, Poser S, Bernardini R, Rinaldo R, di Prampero PE. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc. 2010;42(1):170178. PubMed ID: 20010116 doi:10.1249/MSS.0b013e3181ae5cfd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Park LAF, Scott D, Lovell R. Velocity zone classification in elite women’s football: where do we draw the lines? Sci Med Football. 2019;3(1):2128. doi:10.1080/24733938.2018.1517947

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Malone JJ, Lovell R, Varley MC, Coutts AJ. Unpacking the black box: applications and considerations for using GPS devices in sport. Int J Sports Physiol Perform. 2017;12(suppl 2):S218S226. PubMed ID: 27736244 doi:10.1123/ijspp.2016-0236

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    di Prampero PE, Fusi S, Sepulcri L, Morin JB, Belli A, Antonutto G. Sprint running: a new energetic approach. J Exp Biol. 2005;208(pt 14):28092816. PubMed ID: 16000549 doi:10.1242/jeb.01700

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol. 2017;8:456. PubMed ID: 28439244 doi:10.3389/fpsyg.2017.00456

  • 28.

    Bland J, Altman D. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999; 8(2):135160. PubMed ID: 10501650 doi:10.1177/096228029900800204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Chen PY, Popovich PM. Correlation: Parametric and Nonparametric Measures. Thousand Oaks, CA: Sage; 2002.

  • 31.

    Fessi MS, Moalla W. Postmatch perceived exertion, feeling, and wellness in professional soccer players. Int J Sports Physiol Perform. 2018;13(5):631637. PubMed ID: 29345537 doi:10.1123/ijspp.2017-0725

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Achten J, Jeukendrup AE. Heart rate monitoring: applications and limitations. Sports Med. 2003;33(7):517538. PubMed ID: 12762827 doi:10.2165/00007256-200333070-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2780 1121 62
Full Text Views 60 25 0
PDF Downloads 70 19 3